Role of cytochrome P-450 and flavin-containing monooxygenase in the N-hydroxylation of N-methyl-4-aminoazobenzene in rat liver: analysis with purified enzymes and antibodies.

Gan Pub Date : 1984-10-01
T Kimura, M Kodama, C Nagata
{"title":"Role of cytochrome P-450 and flavin-containing monooxygenase in the N-hydroxylation of N-methyl-4-aminoazobenzene in rat liver: analysis with purified enzymes and antibodies.","authors":"T Kimura,&nbsp;M Kodama,&nbsp;C Nagata","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>By means of high pressure liquid chromatography, the role of flavin-containing monooxygenase (FMO) and cytochrome P-450 (cyt. P-450) in the metabolism of N-methyl-4-aminoazobenzene (MAB) by rat liver microsomes in vitro was studied with the help of antibodies and a chemical inhibitor. Antibody against cyt. P-488 from 3-methylcholanthrene-treated rats (MC-P-448) decreased the formation of N-hydroxy-N-methyl-4-aminoazobenzene (N-OH-MAB) by about 30% in microsomes from MC-treated rats (MC-microsomes), but showed no inhibitory effect on the formation of N-OH-MAB in microsomes from untreated rats (untreated microsomes) or in microsomes from phenobarbital-treated rats (PB-microsomes). Antibody against cyt. P-450 from PB-treated rats did not inhibit N-hydroxylation of MAB by any of the microsomes tested. A competitive inhibitor of FMO, methimazole, inhibited the N-hydroxylation of MAB by 65% in the case of MC-microsomes, and the residual activity was inhibited completely by anti-NADPH-cytochrome P-450 reductase (anti-fPT) antibody. These results indicate that in MC-microsomes, the N-hydroxylation of MAB is catalyzed by both FMO and MC-P-448, but in untreated and PB-microsomes the reaction is catalyzed exclusively by FMO.</p>","PeriodicalId":12660,"journal":{"name":"Gan","volume":"75 10","pages":"895-904"},"PeriodicalIF":0.0000,"publicationDate":"1984-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gan","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By means of high pressure liquid chromatography, the role of flavin-containing monooxygenase (FMO) and cytochrome P-450 (cyt. P-450) in the metabolism of N-methyl-4-aminoazobenzene (MAB) by rat liver microsomes in vitro was studied with the help of antibodies and a chemical inhibitor. Antibody against cyt. P-488 from 3-methylcholanthrene-treated rats (MC-P-448) decreased the formation of N-hydroxy-N-methyl-4-aminoazobenzene (N-OH-MAB) by about 30% in microsomes from MC-treated rats (MC-microsomes), but showed no inhibitory effect on the formation of N-OH-MAB in microsomes from untreated rats (untreated microsomes) or in microsomes from phenobarbital-treated rats (PB-microsomes). Antibody against cyt. P-450 from PB-treated rats did not inhibit N-hydroxylation of MAB by any of the microsomes tested. A competitive inhibitor of FMO, methimazole, inhibited the N-hydroxylation of MAB by 65% in the case of MC-microsomes, and the residual activity was inhibited completely by anti-NADPH-cytochrome P-450 reductase (anti-fPT) antibody. These results indicate that in MC-microsomes, the N-hydroxylation of MAB is catalyzed by both FMO and MC-P-448, but in untreated and PB-microsomes the reaction is catalyzed exclusively by FMO.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞色素P-450和含黄素单加氧酶在大鼠肝脏n-甲基-4-氨基偶氮苯n-羟基化中的作用:纯化酶和抗体的分析。
采用高压液相色谱法对含黄素单加氧酶(FMO)和细胞色素P-450 (cyt)的作用进行了分析。在抗体和化学抑制剂的帮助下,研究了P-450在体外大鼠肝微粒体代谢n -甲基-4-氨基偶氮苯(MAB)中的作用。抗cyt抗体。3-甲基胆蒽处理大鼠(MC-P-448)的P-488使mc处理大鼠微粒体(mc -微粒体)中n -羟基- n -甲基-4-氨基偶氮苯(N-OH-MAB)的形成减少约30%,但对未处理大鼠微粒体(未处理微粒体)或苯巴比妥处理大鼠微粒体(pb -微粒体)中N-OH-MAB的形成没有抑制作用。抗cyt抗体。来自pb处理的大鼠的P-450没有通过任何测试的微粒体抑制单克隆抗体的n -羟基化。FMO的竞争性抑制剂甲巯咪唑对mc -微粒体中MAB的n -羟基化作用抑制了65%,而抗nadph -细胞色素P-450还原酶(anti-fPT)抗体则完全抑制了残余活性。这些结果表明,在mc -微粒体中,单克隆抗体的n -羟基化反应由FMO和MC-P-448共同催化,而在未经处理的和pb -微粒体中,该反应仅由FMO催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gan
Gan
自引率
0.00%
发文量
0
期刊最新文献
Effects of dibutyryl adenosine 3'-5' cyclic monophosphate on the ultrastructure of rat ascites hepatoma cells and on the intracellular localization of alpha-fetoprotein. Search for possible routes of vertical and horizontal transmission of adult T-cell leukemia virus. Transfusion-mediated spread of the human T-cell leukemia virus in chronic hemodialysis patients in a heavily endemic area, Nagasaki. Interconversion of biological characteristics of small cell lung cancer depending on culture conditions. The capacity of antigen-presenting cells is fully preserved in childhood cancer patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1