{"title":"Effect of lymphatic cannula outflow height on lung microvascular permeability estimations.","authors":"G A Laine, R E Drake, F G Zavisca, J C Gabel","doi":"10.1152/jappl.1984.57.5.1412","DOIUrl":null,"url":null,"abstract":"<p><p>Estimates of the pulmonary microvascular membrane reflection coefficient (sigma) and permeability-surface area product (PS) are frequently made with the assumption that a percent change in transmicrovascular fluid flux (Jv) will be represented by an equal percent change in the lymph flow rate (QL) from a single cannulated lung lymph vessel. To test this, we measured QL in seven anesthetized dogs with the outflow end of the lymph cannula set at several heights (H) above and below the lung hilus. The left atrial pressure was then elevated to increase Jv, and QL was again measured at several H's. The percent increase in QL at elevated left atrial pressure depended on H. We used the QL data and lymph and plasma protein concentrations to estimate sigma and PS with a modified form of the Kedem and Katchalsky equations. The calculated values varied considerably with H. Our results indicate that changes in Jv are not represented by equal changes in QL. Therefore, techniques for estimating permeability that depend upon QL as an estimate of Jv may lead to erroneous estimates of sigma and PS.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 5","pages":"1412-6"},"PeriodicalIF":0.0000,"publicationDate":"1984-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.5.1412","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.5.1412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Estimates of the pulmonary microvascular membrane reflection coefficient (sigma) and permeability-surface area product (PS) are frequently made with the assumption that a percent change in transmicrovascular fluid flux (Jv) will be represented by an equal percent change in the lymph flow rate (QL) from a single cannulated lung lymph vessel. To test this, we measured QL in seven anesthetized dogs with the outflow end of the lymph cannula set at several heights (H) above and below the lung hilus. The left atrial pressure was then elevated to increase Jv, and QL was again measured at several H's. The percent increase in QL at elevated left atrial pressure depended on H. We used the QL data and lymph and plasma protein concentrations to estimate sigma and PS with a modified form of the Kedem and Katchalsky equations. The calculated values varied considerably with H. Our results indicate that changes in Jv are not represented by equal changes in QL. Therefore, techniques for estimating permeability that depend upon QL as an estimate of Jv may lead to erroneous estimates of sigma and PS.