{"title":"A morphometric study of the carotid body in chronically hypoxic rats.","authors":"K H McGregor, J Gil, S Lahiri","doi":"10.1152/jappl.1984.57.5.1430","DOIUrl":null,"url":null,"abstract":"<p><p>We performed morphometric studies of carotid body in acutely and chronically hypoxic rats (inspired PO2 = 70 Torr, at sea level). Acute exposure was for the duration of about 10 min, and chronic exposure lasted for 28 days. We confirmed that the total volume of the organ increased by severalfold. At the light-microscopy level we found an enlargement of the volume density of the blood sinuses from 14 to 31% due to chronic hypoxia. The morphometric hematocrit increased from 39 to 70% paralleling changes in the conventionally measured venous hematocrit. These data do not show any specific plasma skimming in the carotid body blood vessels. With the electron microscope we found that the mean average volume of type I cells increased from 320 micron3 in controls to 1,120 micron3 in the chronically hypoxic rats without hyperplasia, whereas type II cells had increased in number without alteration in size. Qualitative observations revealed that the normal appearance of clusters of ovoid type I cells interspersed by capillaries had been transformed into a pattern of individual cells forming plates between expanded blood vessels with a large increase of contact area between the cells and vessels. Type II cells appeared to have proliferated without changes in individual size to cover the enlarged periphery of type I cells. The observed structural changes in the carotid body parenchyma and vasculature appear to be physiologically adaptive and provide further support for the idea that various elements in the organ are particularly sensitive to hypoxia.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 5","pages":"1430-8"},"PeriodicalIF":0.0000,"publicationDate":"1984-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.5.1430","citationCount":"140","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.5.1430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140
Abstract
We performed morphometric studies of carotid body in acutely and chronically hypoxic rats (inspired PO2 = 70 Torr, at sea level). Acute exposure was for the duration of about 10 min, and chronic exposure lasted for 28 days. We confirmed that the total volume of the organ increased by severalfold. At the light-microscopy level we found an enlargement of the volume density of the blood sinuses from 14 to 31% due to chronic hypoxia. The morphometric hematocrit increased from 39 to 70% paralleling changes in the conventionally measured venous hematocrit. These data do not show any specific plasma skimming in the carotid body blood vessels. With the electron microscope we found that the mean average volume of type I cells increased from 320 micron3 in controls to 1,120 micron3 in the chronically hypoxic rats without hyperplasia, whereas type II cells had increased in number without alteration in size. Qualitative observations revealed that the normal appearance of clusters of ovoid type I cells interspersed by capillaries had been transformed into a pattern of individual cells forming plates between expanded blood vessels with a large increase of contact area between the cells and vessels. Type II cells appeared to have proliferated without changes in individual size to cover the enlarged periphery of type I cells. The observed structural changes in the carotid body parenchyma and vasculature appear to be physiologically adaptive and provide further support for the idea that various elements in the organ are particularly sensitive to hypoxia.