Takashi Ito*, Samantha G. Jenkins, Soenke Seifert and Ahmet Uysal,
{"title":"Electrochemistry-Induced Direct Deposition of Nanoscale Thin Zeolitic Imidazolate Framework-8 Films on Insulator Substrates","authors":"Takashi Ito*, Samantha G. Jenkins, Soenke Seifert and Ahmet Uysal, ","doi":"10.1021/acs.cgd.3c00329","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical approaches have been explored as controlled means to prepare thin films of metal–organic frameworks (MOFs) on electrodes but have rarely been used to form insulator films on insulator surfaces. Herein, we report an electrochemistry-based approach to direct deposition of a thin film of zeolitic imidazolate framework-8 (ZIF-8) onto an insulator surface. The film deposition was induced by a cathodic reaction at an electrode that was placed above the insulator with a separation of ≈100 μm in a methanol solution containing ZnCl<sub>2</sub> and 2-methylimidizole. The effects of the electrode and insulator material, applied potential, electrode–substrate distance, deposition time, and the number of deposition cycles were systematically investigated to gain insight into the deposition mechanism. The results of these measurements were consistent with a hypothesized mechanism involving cathodic base generation at the working electrode for ligand deprotonation, formation of intermediate species, their diffusion toward the substrate, and the formation of ZIF-8 on the substrate. Interestingly, the size, shape, and position of the film on the substrate replicated those of the working electrode, showing the applicability of this approach to the patterned deposition of a ZIF-8 film. In addition, film thickness could be easily controlled in the range of tens to hundreds of nanometers by adjusting the potential application conditions. This electrochemistry-induced method will provide a simple means for the patterned formation of a MOF film of controlled thickness on an insulator without metal precoating and thus will open the possibility of designing unique devices for various applications including chemical sensing and separations.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"23 9","pages":"6369–6377"},"PeriodicalIF":3.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c00329","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical approaches have been explored as controlled means to prepare thin films of metal–organic frameworks (MOFs) on electrodes but have rarely been used to form insulator films on insulator surfaces. Herein, we report an electrochemistry-based approach to direct deposition of a thin film of zeolitic imidazolate framework-8 (ZIF-8) onto an insulator surface. The film deposition was induced by a cathodic reaction at an electrode that was placed above the insulator with a separation of ≈100 μm in a methanol solution containing ZnCl2 and 2-methylimidizole. The effects of the electrode and insulator material, applied potential, electrode–substrate distance, deposition time, and the number of deposition cycles were systematically investigated to gain insight into the deposition mechanism. The results of these measurements were consistent with a hypothesized mechanism involving cathodic base generation at the working electrode for ligand deprotonation, formation of intermediate species, their diffusion toward the substrate, and the formation of ZIF-8 on the substrate. Interestingly, the size, shape, and position of the film on the substrate replicated those of the working electrode, showing the applicability of this approach to the patterned deposition of a ZIF-8 film. In addition, film thickness could be easily controlled in the range of tens to hundreds of nanometers by adjusting the potential application conditions. This electrochemistry-induced method will provide a simple means for the patterned formation of a MOF film of controlled thickness on an insulator without metal precoating and thus will open the possibility of designing unique devices for various applications including chemical sensing and separations.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.