Energy transfer as parametric excitation: an examination of nonlinearity in enzymatic reaction, nerve conduction, muscle contraction, electron tunneling, and electron transfer.
{"title":"Energy transfer as parametric excitation: an examination of nonlinearity in enzymatic reaction, nerve conduction, muscle contraction, electron tunneling, and electron transfer.","authors":"T W Barrett","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical parametric excitation is presented as the fundamental mechanism of energy transfer. Together with the Franck-Condon principle, it provides a mechanically sound explanation for enzymatic reaction, nerve excitation, muscle contraction, and electron transfer at a basic level. Intermediate between macroscopic models of membrane asymmetry and molecular models, the new model rests on a systematic approach, proposed here, to organizational aspects of the energy transfer processes. In support, a derivation is given of the chemical analog of the Manley-Rowe power conservation relations for parametrically excited electrical networks. This extension to chemical systems indicates for the first time an explanation of power flow directionality and delegates a pumping role to the enzyme. The generalized Manley-Rowe relations are suggested to be a universal law of nature. In such case, nonlinearity could be attributable to the coupling of three systems by these generalized Manley-Rowe conditions relating flows/reactions/oscillations--even though separately each system might be described by linear (Onsager) relations.</p>","PeriodicalId":20124,"journal":{"name":"Physiological chemistry and physics","volume":"14 3","pages":"249-79"},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological chemistry and physics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical parametric excitation is presented as the fundamental mechanism of energy transfer. Together with the Franck-Condon principle, it provides a mechanically sound explanation for enzymatic reaction, nerve excitation, muscle contraction, and electron transfer at a basic level. Intermediate between macroscopic models of membrane asymmetry and molecular models, the new model rests on a systematic approach, proposed here, to organizational aspects of the energy transfer processes. In support, a derivation is given of the chemical analog of the Manley-Rowe power conservation relations for parametrically excited electrical networks. This extension to chemical systems indicates for the first time an explanation of power flow directionality and delegates a pumping role to the enzyme. The generalized Manley-Rowe relations are suggested to be a universal law of nature. In such case, nonlinearity could be attributable to the coupling of three systems by these generalized Manley-Rowe conditions relating flows/reactions/oscillations--even though separately each system might be described by linear (Onsager) relations.