{"title":"Background removal from rapid-scan EPR spectra of nitroxide-based spin labels by minimizing non-quadratic cost functions","authors":"Florian Johannsen, Malte Drescher","doi":"10.1016/j.jmro.2023.100121","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid-scan electron paramagnetic resonance spectroscopy is an emerging technique which substantially improves the signal-to-noise ratio and time resolution compared to conventional continuous-wave experiments. This allows the investigation of spin-labeled biomolecules and their structural dynamics on much shorter time scales than usually accessible. The EPR spectrum however is superimposed by a strong background that is caused by microphonic effects of the alternating magnetic field. This article discusses the use of non-quadratic cost functions for background removal of rapid-scan spectra. The method is validated for the most prominent type of spin-probes in the field of biochemistry: the nitroxide spin-label.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100121"},"PeriodicalIF":2.6240,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441023000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid-scan electron paramagnetic resonance spectroscopy is an emerging technique which substantially improves the signal-to-noise ratio and time resolution compared to conventional continuous-wave experiments. This allows the investigation of spin-labeled biomolecules and their structural dynamics on much shorter time scales than usually accessible. The EPR spectrum however is superimposed by a strong background that is caused by microphonic effects of the alternating magnetic field. This article discusses the use of non-quadratic cost functions for background removal of rapid-scan spectra. The method is validated for the most prominent type of spin-probes in the field of biochemistry: the nitroxide spin-label.