{"title":"Comparative Studies of Synthesis, Performance, and Applications of Recently Developed CL-20 Based Co-crystals","authors":"Qamar-un-Nisa Tariq, Maher-un-Nisa Tariq, Wen-Shuai Dong, Saira Manzoor, Faiza Arshad and Jian-Guo Zhang*, ","doi":"10.1021/acs.cgd.3c00340","DOIUrl":null,"url":null,"abstract":"<p >Owing to promising characteristics including a high heat of formation (100 kcal·mol<sup>–1</sup>), high density (2.04 g·cm<sup>–3</sup>), and powerful explosive nature (14–20% more potent than 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)), the hollow cage-type molecular structure of polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW/CL-20) has recently attained significant attention from scientists. Its high sensitivity toward mechanical stimuli raises safety concerns. The safety–power contradiction of high-energy explosives can be alleviated to a certain extent via a co-crystallization method. It is possible to modify the properties of energetic materials such as melting and decomposition point, density, detonation properties (detonation velocity and detonation pressure), and mechanical sensitivities (friction and impact) by forming a new chemical composition from the new/existing molecules through noncovalent interactions (π–π stacking, hydrogen bonds, and van der Waals forces). Energetic co-crystals have been developed by various approaches such as solvent evaporation, solvent/nonsolvent, grinding, slurry, resonant acoustic mixing, etc. This Review highlights an interesting overview of HNIW/CL-20 based energetic co-crystals, including their synthetic methods, intermolecular interactions, and physicochemical and energetic properties. Moreover, their applications, existing problems, and challenges for future work on CL-20-based co-crystals are also discussed.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"23 9","pages":"6974–6987"},"PeriodicalIF":3.2000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c00340","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to promising characteristics including a high heat of formation (100 kcal·mol–1), high density (2.04 g·cm–3), and powerful explosive nature (14–20% more potent than 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)), the hollow cage-type molecular structure of polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW/CL-20) has recently attained significant attention from scientists. Its high sensitivity toward mechanical stimuli raises safety concerns. The safety–power contradiction of high-energy explosives can be alleviated to a certain extent via a co-crystallization method. It is possible to modify the properties of energetic materials such as melting and decomposition point, density, detonation properties (detonation velocity and detonation pressure), and mechanical sensitivities (friction and impact) by forming a new chemical composition from the new/existing molecules through noncovalent interactions (π–π stacking, hydrogen bonds, and van der Waals forces). Energetic co-crystals have been developed by various approaches such as solvent evaporation, solvent/nonsolvent, grinding, slurry, resonant acoustic mixing, etc. This Review highlights an interesting overview of HNIW/CL-20 based energetic co-crystals, including their synthetic methods, intermolecular interactions, and physicochemical and energetic properties. Moreover, their applications, existing problems, and challenges for future work on CL-20-based co-crystals are also discussed.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.