{"title":"Nitric oxide: what role does it play in inflammation and tissue destruction?","authors":"C H Evans","doi":"10.1007/978-3-0348-7343-7_9","DOIUrl":null,"url":null,"abstract":"<p><p>Large amount of nitric oxide (NO) are produced at sites of inflammation through the action of inducible nitric oxide synthase (iNOS) present in both infiltrating leucocytes and activated, resident tissue cells. However, the role of NO in inflammation remains unclear. NO is a vasodilator, which inhibits the adhesion of neutrophils to the vascular endothelium; it reduces the production of IL-6 by Kupffer cells and chondrocytes, and the production of gamma-IFN and TNF-alpha by splenocytes. The literature provides contradictory information on the effect of NO on vascular leakiness, chemotaxis, prostaglandin production and tissue damage. Increasingly, data suggest that NO is immunosuppressive. Inhibitors of NOS have potent prophylactic activity in several but not all, animal models of inflammatory disease. However, in rat adjuvant arthritis, therapeutic activity is weak. Whether inhibitors of iNOS will be therapeutically useful in human inflammatory diseases cannot be predicted on the basis of present information.</p>","PeriodicalId":7491,"journal":{"name":"Agents and actions. Supplements","volume":"47 ","pages":"107-16"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agents and actions. Supplements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-0348-7343-7_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91
Abstract
Large amount of nitric oxide (NO) are produced at sites of inflammation through the action of inducible nitric oxide synthase (iNOS) present in both infiltrating leucocytes and activated, resident tissue cells. However, the role of NO in inflammation remains unclear. NO is a vasodilator, which inhibits the adhesion of neutrophils to the vascular endothelium; it reduces the production of IL-6 by Kupffer cells and chondrocytes, and the production of gamma-IFN and TNF-alpha by splenocytes. The literature provides contradictory information on the effect of NO on vascular leakiness, chemotaxis, prostaglandin production and tissue damage. Increasingly, data suggest that NO is immunosuppressive. Inhibitors of NOS have potent prophylactic activity in several but not all, animal models of inflammatory disease. However, in rat adjuvant arthritis, therapeutic activity is weak. Whether inhibitors of iNOS will be therapeutically useful in human inflammatory diseases cannot be predicted on the basis of present information.