Tachykinin antagonists and the airways.

G F Joos, J C Kips, R A Peleman, R A Pauwels
{"title":"Tachykinin antagonists and the airways.","authors":"G F Joos,&nbsp;J C Kips,&nbsp;R A Peleman,&nbsp;R A Pauwels","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>There is now convincing evidence for the presence of substance P (SP) and neurokinin A (NKA) in human airway nerves. Studies on autopsy tissue, on bronchoalveolar lavage fluid and on sputum suggest that SP may be present in increased amounts in the asthmatic airway. Substance P and NKA are potent bronchoconstrictors of human airways, asthmatics being more sensitive than normal persons. The major enzyme responsible for the degradation of the tachykinins, the neutral endopeptidase, is present in the airways and is involved in the breakdown of exogenously administered SP and NKA, both in normal and asthmatic persons. Other, less well documented airway effects of SP and NKA include mucus secretion, vasodilation and plasma extravasation, as well as the chemoattraction and stimulation of various cells presumed to be involved in asthmatic airway inflammation. NK2 receptors and, to a lesser extent, NK1 receptors have been shown to be involved in bronchoconstriction, whereas NK1 receptors were found to be involved in mucus secretion, microvascular leakage and vasodilatation, and in most of the effects on inflammatory cells. The first clinical trial with FK224, a peptide NK1 and NK2 receptor antagonist, and CP99994, a nonpeptide NK1 receptor antagonist, are negative. However, FK224 failed to block the bronchoconstrictor effect of NKA in asthmatics and the dose of CP99994, needed to antagonize tachykinin effects in man, remains to be determined.</p>","PeriodicalId":8166,"journal":{"name":"Archives internationales de pharmacodynamie et de therapie","volume":"329 1","pages":"205-19"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de pharmacodynamie et de therapie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is now convincing evidence for the presence of substance P (SP) and neurokinin A (NKA) in human airway nerves. Studies on autopsy tissue, on bronchoalveolar lavage fluid and on sputum suggest that SP may be present in increased amounts in the asthmatic airway. Substance P and NKA are potent bronchoconstrictors of human airways, asthmatics being more sensitive than normal persons. The major enzyme responsible for the degradation of the tachykinins, the neutral endopeptidase, is present in the airways and is involved in the breakdown of exogenously administered SP and NKA, both in normal and asthmatic persons. Other, less well documented airway effects of SP and NKA include mucus secretion, vasodilation and plasma extravasation, as well as the chemoattraction and stimulation of various cells presumed to be involved in asthmatic airway inflammation. NK2 receptors and, to a lesser extent, NK1 receptors have been shown to be involved in bronchoconstriction, whereas NK1 receptors were found to be involved in mucus secretion, microvascular leakage and vasodilatation, and in most of the effects on inflammatory cells. The first clinical trial with FK224, a peptide NK1 and NK2 receptor antagonist, and CP99994, a nonpeptide NK1 receptor antagonist, are negative. However, FK224 failed to block the bronchoconstrictor effect of NKA in asthmatics and the dose of CP99994, needed to antagonize tachykinin effects in man, remains to be determined.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
速激肽拮抗剂和气道。
现在有令人信服的证据表明P物质(SP)和神经激肽A (NKA)存在于人类气道神经中。对尸检组织、支气管肺泡灌洗液和痰液的研究表明,SP在哮喘气道中的含量可能增加。P物质和NKA是人体气道的有效支气管收缩剂,哮喘患者比正常人更敏感。负责快速激肽降解的主要酶,中性内肽酶,存在于气道中,参与外源性给药SP和NKA的分解,在正常和哮喘患者中都是如此。SP和NKA对气道的其他影响,文献记载较少,包括粘液分泌、血管舒张和血浆外溢,以及各种细胞的化学吸引和刺激,这些细胞被认为与哮喘气道炎症有关。NK2受体和较小程度上的NK1受体已被证明参与支气管收缩,而NK1受体被发现参与粘液分泌、微血管渗漏和血管扩张,以及对炎症细胞的大多数影响。FK224(肽NK1和NK2受体拮抗剂)和CP99994(非肽NK1受体拮抗剂)的首次临床试验结果均为阴性。然而,FK224在哮喘患者中未能阻断NKA的支气管收缩作用,而在人体中拮抗速激肽作用所需的CP99994的剂量仍有待确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growth and metabolism. Alteration of the cardiac effects of midazolam by hypothermia in rat isolated atria. K+ channel-opening action contributes to the preventive effects of nicorandil on U46619-induced vasoconstriction of canine large coronary arteries in vivo. Effects of mefloquine on Ca2+ uptake and release by dog brain microsomes. Observation of high and low molecular weight inhibitors of angiotensin-converting enzyme in rat lung.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1