J Tavernier, S Cornelis, R Devos, Y Guisez, G Plaetinck, J Van der Heyden
{"title":"Structure/function analysis of human interleukin 5 and its receptor.","authors":"J Tavernier, S Cornelis, R Devos, Y Guisez, G Plaetinck, J Van der Heyden","doi":"10.1007/978-3-0348-7276-8_3","DOIUrl":null,"url":null,"abstract":"<p><p>We have performed a detailed structure-function analysis of human interleukin 5 (hIL5) and its receptor. By testing a hIL5 mutant panel in a solid phase binding assay and a proliferation assay using hIL5 dependent cell-lines, areas on hIL5 involved in either the receptor alpha-subunit interaction or in receptor activation were identified. Epitope mapping data of a neutralizing and a non-neutralizing monoclonal antibody were in agreement with the mutant analysis. hIL5 binding areas on the IL5R alpha-subunit were identified by interspecies chimaera analysis. Finally, hIL5 mutants with reduced receptor activation potential have antagonistic properties.</p>","PeriodicalId":7491,"journal":{"name":"Agents and actions. Supplements","volume":"46 ","pages":"23-34"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agents and actions. Supplements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-0348-7276-8_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We have performed a detailed structure-function analysis of human interleukin 5 (hIL5) and its receptor. By testing a hIL5 mutant panel in a solid phase binding assay and a proliferation assay using hIL5 dependent cell-lines, areas on hIL5 involved in either the receptor alpha-subunit interaction or in receptor activation were identified. Epitope mapping data of a neutralizing and a non-neutralizing monoclonal antibody were in agreement with the mutant analysis. hIL5 binding areas on the IL5R alpha-subunit were identified by interspecies chimaera analysis. Finally, hIL5 mutants with reduced receptor activation potential have antagonistic properties.