Combination Therapy with Gallium Protoporphyrin and Gallium Nitrate Exhibits Enhanced Antimicrobial Activity In Vitro and In Vivo against Methicillin-Resistant Staphylococcus aureus
Seoung-ryoung Choi, Geoffrey A. Talmon, Kenneth Hearne, Jennifer Woo, Vu L. Truong, Bradley E. Britigan and Prabagaran Narayanasamy*,
{"title":"Combination Therapy with Gallium Protoporphyrin and Gallium Nitrate Exhibits Enhanced Antimicrobial Activity In Vitro and In Vivo against Methicillin-Resistant Staphylococcus aureus","authors":"Seoung-ryoung Choi, Geoffrey A. Talmon, Kenneth Hearne, Jennifer Woo, Vu L. Truong, Bradley E. Britigan and Prabagaran Narayanasamy*, ","doi":"10.1021/acs.molpharmaceut.3c00223","DOIUrl":null,"url":null,"abstract":"<p >There is a major need for the development of new therapeutics to combat antibiotic-resistant <i>Staphylococcus aureus</i>. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO<sub>3</sub>)<sub>3</sub>, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO<sub>3</sub>)<sub>3</sub> against methicillin-resistant <i>S. aureus</i> (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO<sub>3</sub>)<sub>3</sub> inhibited the MRSA catalase but not above that seen with Ga(NO<sub>3</sub>)<sub>3</sub> alone. Neither GaPP nor Ga(NO<sub>3</sub>)<sub>3</sub> alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO<sub>3</sub>)<sub>3</sub> compared to untreated control or mice receiving GaPP or Ga(NO<sub>3</sub>)<sub>3</sub> alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO<sub>3</sub>)<sub>3</sub> in combination have excellent synergism and potential to be developed as a novel therapy for infections with <i>S. aureus</i>.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"20 8","pages":"4058–4070"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.
目前迫切需要开发新的治疗方法来对抗耐抗生素的金黄色葡萄球菌。最近,镓(Ga)基配合物通过靶向多种血红素/铁依赖的代谢途径,对多种细菌(包括多药耐药生物)显示出有希望的抗菌作用。其中,Ga原卟啉(GaPP)通过靶向血红素途径(包括有氧呼吸)抑制细菌生长。Ga(NO3)3,一种铁的模拟物,破坏元素铁的途径。在这里,我们证明了GaPP和Ga(NO3)3组合在铁限制条件下对耐甲氧西林金黄色葡萄球菌(MRSA)的抗菌活性增强,包括小菌落变异(SCV)。该疗法显示出显著的抗菌活性,而不会诱导生长缓慢的SCV。我们还观察到GaPP和Ga(NO3)3联合对MRSA过氧化氢酶的抑制作用,但不高于Ga(NO3)3单独作用。在铁限条件下,GaPP和Ga(NO3)3单独或联合均不能抑制显性超氧化物歧化酶的表达(SodA)。与腹腔内给药相比,这两种化合物的鼻内给药改善了药物在肺部的生物分布。在小鼠MRSA肺部感染模型中,我们观察到与未治疗的对照组或单独接受GaPP或Ga(NO3)3的小鼠相比,接受鼻内GaPP和Ga(NO3)3联合治疗的小鼠的存活率显著增加,MRSA肺部cfu显著降低。在13天的时间里,单次和多次给药10 mg Ga /Kg小鼠的脾脏、肺、鼻腔和肾脏均未观察到药物相关毒性。我们的研究结果强烈提示GaPP和Ga(NO3)3联合使用具有良好的协同作用,具有开发金黄色葡萄球菌感染新疗法的潜力。
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.