A E Maccubbin, N Ersing, E E Budzinski, H C Box, H L Gurtoo
{"title":"Formation of 8-hydroxyguanine in DNA during mitomycin C activation.","authors":"A E Maccubbin, N Ersing, E E Budzinski, H C Box, H L Gurtoo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>DNA damage caused indirectly via reactive oxygen species generated during reductive activation of mitomycin C was evaluated. This oxidative DNA damage was measured by determining the formation of 8-hydroxyguanine in DNA exposed to chemically or enzymatically activated mitomycin C. The level of 8-hydroxyguanine was measured indirectly by determining formamidopyrimidine-DNA glycosylase-sensitive sites induced in plasmid DNA exposed to mitomycin C and directly by a 32P-postlabeling assay for the modified base. Activation of mitomycin C by sodium borohydride in air, by H2/Pt, or xanthine oxidase in N2 caused increases in the level of 8-hydroxyguanine. The extent of the increase varied according to the incubation conditions with the greatest increase being observed in DNA exposed to mitomycin C activated under hypoxic conditions. These results support a possible indirect mechanism for DNA damage caused by mitomycin C that is mediated by reactive oxygen species.</p>","PeriodicalId":9552,"journal":{"name":"Cancer biochemistry biophysics","volume":"14 3","pages":"183-91"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer biochemistry biophysics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
DNA damage caused indirectly via reactive oxygen species generated during reductive activation of mitomycin C was evaluated. This oxidative DNA damage was measured by determining the formation of 8-hydroxyguanine in DNA exposed to chemically or enzymatically activated mitomycin C. The level of 8-hydroxyguanine was measured indirectly by determining formamidopyrimidine-DNA glycosylase-sensitive sites induced in plasmid DNA exposed to mitomycin C and directly by a 32P-postlabeling assay for the modified base. Activation of mitomycin C by sodium borohydride in air, by H2/Pt, or xanthine oxidase in N2 caused increases in the level of 8-hydroxyguanine. The extent of the increase varied according to the incubation conditions with the greatest increase being observed in DNA exposed to mitomycin C activated under hypoxic conditions. These results support a possible indirect mechanism for DNA damage caused by mitomycin C that is mediated by reactive oxygen species.