Functional evidence for retinal adenosine receptors.

C E Crosson, R DeBenedetto, J M Gidday
{"title":"Functional evidence for retinal adenosine receptors.","authors":"C E Crosson,&nbsp;R DeBenedetto,&nbsp;J M Gidday","doi":"10.1089/jop.1994.10.499","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine is a potent modulator of various physiological functions. Although adenosine receptors have been demonstrated in the retina, little is known about their functional role. This study determined the effects of relatively selective adenosine agonists on K+ depolarization-induced release of dopamine and retinal arteriolar tone. For dopamine release studies, bovine retinas were isolated and endogenous synaptosomal stores were loaded with [3H] dopamine. Retinas were then transferred to a superfusion chamber and the spontaneous and K+ depolarization-induced release of dopamine were determined. Cyclopentyladenosine (CPA) did not significantly alter the spontaneous release of dopamine; however, CPA produced a dose-related inhibition of K+ depolarization-evoked release of dopamine. This CPA-induced suppression of dopamine release was reversed by pretreatment with the adenosine A1 antagonist cyclopentyltheophylline. In retinal vasculature studies, adenosine and its agonists injected intravitreally dilated retinal arterioles and venules, in newborn pigs, with a potency profile indicative of mediation by A2 adenosine receptors. Intravitreal injections of drugs inhibiting the metabolism of endogenous adenosine also induced an arteriolar vasodilation which was inhibited by co-administration of an adenosine receptor antagonist. Intravitreally administered adenosine antagonists also attenuated the vasodilative response to both systemic hypoxia and systemic hypotension in the newborn pig, indicating that endogenously produced adenosine is important in retinal blood flow regulation.</p>","PeriodicalId":16638,"journal":{"name":"Journal of ocular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jop.1994.10.499","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ocular pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jop.1994.10.499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Adenosine is a potent modulator of various physiological functions. Although adenosine receptors have been demonstrated in the retina, little is known about their functional role. This study determined the effects of relatively selective adenosine agonists on K+ depolarization-induced release of dopamine and retinal arteriolar tone. For dopamine release studies, bovine retinas were isolated and endogenous synaptosomal stores were loaded with [3H] dopamine. Retinas were then transferred to a superfusion chamber and the spontaneous and K+ depolarization-induced release of dopamine were determined. Cyclopentyladenosine (CPA) did not significantly alter the spontaneous release of dopamine; however, CPA produced a dose-related inhibition of K+ depolarization-evoked release of dopamine. This CPA-induced suppression of dopamine release was reversed by pretreatment with the adenosine A1 antagonist cyclopentyltheophylline. In retinal vasculature studies, adenosine and its agonists injected intravitreally dilated retinal arterioles and venules, in newborn pigs, with a potency profile indicative of mediation by A2 adenosine receptors. Intravitreal injections of drugs inhibiting the metabolism of endogenous adenosine also induced an arteriolar vasodilation which was inhibited by co-administration of an adenosine receptor antagonist. Intravitreally administered adenosine antagonists also attenuated the vasodilative response to both systemic hypoxia and systemic hypotension in the newborn pig, indicating that endogenously produced adenosine is important in retinal blood flow regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视网膜腺苷受体的功能证据。
腺苷是多种生理功能的有效调节剂。虽然腺苷受体在视网膜中已被证实,但对其功能作用知之甚少。本研究确定了相对选择性腺苷激动剂对K+去极化诱导的多巴胺释放和视网膜小动脉张力的影响。在多巴胺释放研究中,分离牛视网膜,内源性突触体储存装载[3H]多巴胺。然后将视网膜转移到一个超融合室,并测定自发和K+去极化诱导的多巴胺释放。环戊基腺苷(CPA)对多巴胺的自发释放无显著影响;然而,CPA对K+去极化诱发的多巴胺释放产生剂量相关的抑制作用。这种cpa诱导的多巴胺释放抑制被腺苷A1拮抗剂环戊基茶碱预处理逆转。在视网膜脉管系统研究中,在新生猪中,腺苷及其激动剂注射于玻璃体扩张的视网膜小动脉和小静脉内,其效力谱表明A2腺苷受体介导。玻璃体内注射抑制内源性腺苷代谢的药物也会引起小动脉血管舒张,这种舒张被腺苷受体拮抗剂抑制。玻璃体内注射腺苷拮抗剂也能减弱新生猪对全身缺氧和全身低血压的血管扩张反应,表明内源性产生的腺苷在视网膜血流调节中很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The effect of pilocarpine on ocular levobunolol absorption from ophthalmic solutions. Prejunctional alpha 2-adrenoceptors and adenylyl cyclase regulation in the rabbit iris-ciliary body. Inhibition of cell adhesion to lens capsule by LCM 1910, an RGD-derived peptide. Ocular pharmacokinetics of orally administered azithromycin in rabbits. The presence of L-carnitine in ocular tissues of the rabbit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1