{"title":"Structural mechanisms of trabecular bone loss in primary osteoporosis: specific disease mechanism or early ageing?","authors":"P.I. Croucher , N.J. Garrahan , J.E. Compston","doi":"10.1016/S0169-6009(08)80253-X","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoporosis is characterised by reduced bone mass and disruption of cancellous bone architecture; however, it is unknown whether these changes arise from a specific disease process or represent one extreme of physiological bone loss. We have quantitatively assessed cancellous structure in 35 patients with primary osteoporosis and 41 normal subjects. Cancellous microstructure was assessed by computerised strut analysis and by calculation of trabecular width, separation and number. Node to terminus ratio, node to node and node to loop strut length were significantly decreased in patients with osteoporosis when compared to normal subjects (<em>P</em> < 0.001), whereas terminus count and terminus to terminus strut length were significantly increased (<em>P</em> < 0.001). When two subgroups were matched for age these differences remained highly significant (<em>P</em> < 0.005). However, when two subgroups were matched for cancellous area, no significant differences were observed in any of the structural indices except terminus count (<em>P</em> <0.05). Mean trabecular width and number were significantly lower and trabecular separation significantly higher in the patients with osteoporosis before and after age-matching but their differences disappeared after matching for cancellous area. Multiple regression analysis confirmed highly significant correlations between cancellous bone area and structural indices after adjustment for age, sex and disease status (<em>P</em> < 0.001). Our data demonstrate that for a given cancellous area, structural changes in primary osteoporosis are similar to those observed during age-related bone loss in normal subjects. These findings support the hypothesis that primary osteoporosis is the result of greater biological ageing rather than a specific disease process and are consistent with evidence from other sources that low bone mass is associated with increased mortality from diseases unrelated to osteoporosis.</p></div>","PeriodicalId":77047,"journal":{"name":"Bone and mineral","volume":"25 2","pages":"Pages 111-121"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0169-6009(08)80253-X","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone and mineral","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016960090880253X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Osteoporosis is characterised by reduced bone mass and disruption of cancellous bone architecture; however, it is unknown whether these changes arise from a specific disease process or represent one extreme of physiological bone loss. We have quantitatively assessed cancellous structure in 35 patients with primary osteoporosis and 41 normal subjects. Cancellous microstructure was assessed by computerised strut analysis and by calculation of trabecular width, separation and number. Node to terminus ratio, node to node and node to loop strut length were significantly decreased in patients with osteoporosis when compared to normal subjects (P < 0.001), whereas terminus count and terminus to terminus strut length were significantly increased (P < 0.001). When two subgroups were matched for age these differences remained highly significant (P < 0.005). However, when two subgroups were matched for cancellous area, no significant differences were observed in any of the structural indices except terminus count (P <0.05). Mean trabecular width and number were significantly lower and trabecular separation significantly higher in the patients with osteoporosis before and after age-matching but their differences disappeared after matching for cancellous area. Multiple regression analysis confirmed highly significant correlations between cancellous bone area and structural indices after adjustment for age, sex and disease status (P < 0.001). Our data demonstrate that for a given cancellous area, structural changes in primary osteoporosis are similar to those observed during age-related bone loss in normal subjects. These findings support the hypothesis that primary osteoporosis is the result of greater biological ageing rather than a specific disease process and are consistent with evidence from other sources that low bone mass is associated with increased mortality from diseases unrelated to osteoporosis.