Novica Rados , Muthanna H Al-Dahhan, Milorad P Dudukovic
{"title":"Modeling of the Fischer–Tropsch synthesis in slurry bubble column reactors","authors":"Novica Rados , Muthanna H Al-Dahhan, Milorad P Dudukovic","doi":"10.1016/S0920-5861(03)00007-5","DOIUrl":null,"url":null,"abstract":"<div><p>A multicomponent one-dimensional dynamic mathematical model for the reacting slurry systems with a change in gas flow rate due to the chemical reaction is developed. A change in gas flow rate caused by the chemical reaction is modeled using the overall gas mass balance. Thus, all relevant chemical species are included in the model. Linear first-order reaction kinetics is considered. The gas phase is modeled using the two-bubble class hydrodynamic model. The interaction between small and large bubbles is included as the cross-flow. Suspension of liquid and solids is assumed to form a pseudo slurry phase. Back-mixing in all of the three considered phases, small bubbles, large bubbles and slurry, is accounted for using the axial dispersion model (ADM). Energy balance of the slurry phase is also included in the model. The developed general reacting slurry system model is used to simulate the performance of the Fischer–Tropsch (FT) slurry bubble column (SBC) reactor. Performance of the developed ADM based model is compared with the reactor scale models in which the reactor back-mixing is represented using some combination of the two limiting ideal reactor models of, complete stirred or plug flow.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"79 ","pages":"Pages 211-218"},"PeriodicalIF":5.3000,"publicationDate":"2003-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0920-5861(03)00007-5","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586103000075","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 85
Abstract
A multicomponent one-dimensional dynamic mathematical model for the reacting slurry systems with a change in gas flow rate due to the chemical reaction is developed. A change in gas flow rate caused by the chemical reaction is modeled using the overall gas mass balance. Thus, all relevant chemical species are included in the model. Linear first-order reaction kinetics is considered. The gas phase is modeled using the two-bubble class hydrodynamic model. The interaction between small and large bubbles is included as the cross-flow. Suspension of liquid and solids is assumed to form a pseudo slurry phase. Back-mixing in all of the three considered phases, small bubbles, large bubbles and slurry, is accounted for using the axial dispersion model (ADM). Energy balance of the slurry phase is also included in the model. The developed general reacting slurry system model is used to simulate the performance of the Fischer–Tropsch (FT) slurry bubble column (SBC) reactor. Performance of the developed ADM based model is compared with the reactor scale models in which the reactor back-mixing is represented using some combination of the two limiting ideal reactor models of, complete stirred or plug flow.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.