Traffic of synaptic vesicle proteins in polarized and nonpolarized cells.

P Cameron, O Mundigl, P De Camilli
{"title":"Traffic of synaptic vesicle proteins in polarized and nonpolarized cells.","authors":"P Cameron,&nbsp;O Mundigl,&nbsp;P De Camilli","doi":"10.1242/jcs.1993.supplement_17.14","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons have at least two pathways of regulated secretion, which involve two classes of secretory organelles: typical synaptic vesicles (SVs) and large dense-core vesicles. Large dense-core vesicles store and secrete peptide neurotransmitters and amines, and may be seen as the neuronal counterpart of secretory granules of endocrine cells. SVs are highly specialized secretory organelles, which store and secrete non-peptide hormones and play a dominant role in the fast, point-to-point signalling typical of the nervous system. Microvesicles that share a variety of biochemical and functional similarities with SVs (synaptic-like microvesicles) have recently been described in endocrine cells. SVs and synaptic-like microvesicles are closely related to vesicular carriers of the receptor-mediated recycling pathway. They undergo repeated cycles of exo-endocytosis, which are thought to involve endosomal intermediates. In mature neurons, SVs are concentrated in axon endings. To gain insight into the mechanisms responsible for SV targeting, we have studied the traffic of SV proteins in both endocrine cells and developing hippocampal neurons in primary culture at different stages of differentiation. Additionally, the distribution of the SV protein synaptophysin, when expressed by transfection in fibroblastic cells or in polarized epithelial cells (MDCK cells), was investigated. SV proteins are already present in developing neurons at stages preceding the establishment of neuronal polarity. As axons and dendrites form, SV proteins are found in both types of processes, although they become progressively more concentrated in the axon. Throughout these developmental stages SVs undergo active exo-endocytotic recycling.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":77195,"journal":{"name":"Journal of cell science. Supplement","volume":"17 ","pages":"93-100"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1242/jcs.1993.supplement_17.14","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science. Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jcs.1993.supplement_17.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Neurons have at least two pathways of regulated secretion, which involve two classes of secretory organelles: typical synaptic vesicles (SVs) and large dense-core vesicles. Large dense-core vesicles store and secrete peptide neurotransmitters and amines, and may be seen as the neuronal counterpart of secretory granules of endocrine cells. SVs are highly specialized secretory organelles, which store and secrete non-peptide hormones and play a dominant role in the fast, point-to-point signalling typical of the nervous system. Microvesicles that share a variety of biochemical and functional similarities with SVs (synaptic-like microvesicles) have recently been described in endocrine cells. SVs and synaptic-like microvesicles are closely related to vesicular carriers of the receptor-mediated recycling pathway. They undergo repeated cycles of exo-endocytosis, which are thought to involve endosomal intermediates. In mature neurons, SVs are concentrated in axon endings. To gain insight into the mechanisms responsible for SV targeting, we have studied the traffic of SV proteins in both endocrine cells and developing hippocampal neurons in primary culture at different stages of differentiation. Additionally, the distribution of the SV protein synaptophysin, when expressed by transfection in fibroblastic cells or in polarized epithelial cells (MDCK cells), was investigated. SV proteins are already present in developing neurons at stages preceding the establishment of neuronal polarity. As axons and dendrites form, SV proteins are found in both types of processes, although they become progressively more concentrated in the axon. Throughout these developmental stages SVs undergo active exo-endocytotic recycling.(ABSTRACT TRUNCATED AT 250 WORDS)

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极化和非极化细胞突触囊泡蛋白的转运。
神经元至少有两种受调节的分泌途径,涉及两类分泌细胞器:典型的突触囊泡(SVs)和大的密核囊泡。大的致密核囊泡储存和分泌多肽神经递质和胺,可以看作是内分泌细胞分泌颗粒的神经元对应物。SVs是高度特化的分泌细胞器,储存和分泌非肽激素,并在神经系统典型的快速点对点信号传导中发挥主导作用。最近在内分泌细胞中发现了与突触样微泡(SVs)具有多种生化和功能相似性的微泡。SVs和突触样微泡与受体介导的循环途径的囊泡载体密切相关。它们经历反复循环的外胞吞作用,这被认为涉及内体中间体。在成熟神经元中,sv集中在轴突末梢。为了深入了解SV靶向的机制,我们研究了SV蛋白在内分泌细胞和发育中的海马神经元中不同分化阶段的转运。此外,研究了SV蛋白synaptophysin在成纤维细胞或极化上皮细胞(MDCK细胞)中转染表达时的分布。在神经元极性形成之前,SV蛋白就已经存在于发育中的神经元中。随着轴突和树突的形成,SV蛋白在这两种过程中都有发现,尽管它们在轴突中逐渐集中。在整个发育阶段,sv经历了活跃的外内吞循环。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studies of DNA methylation in animals. Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. Analysis of the temporal program of replication initiation in yeast chromosomes. On the structure of replication and transcription factories. Stepwise assembly of initiation complexes at budding yeast replication origins during the cell cycle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1