{"title":"Catabolite repression of beta-glucanase synthesis in Bacillus subtilis.","authors":"S Krüger, J Stülke, M Hecker","doi":"10.1099/00221287-139-9-2047","DOIUrl":null,"url":null,"abstract":"<p><p>beta-Glucanase synthesis in Bacillus subtilis was repressed by glucose and other substrates of glycolysis. Experiments with different pts mutants showed that the phosphoenolpyruvate: sugar phosphotransferase system is not involved in carbon catabolite repression of beta-glucanase synthesis. Carbon catabolite repression of beta-glucanase synthesis was completely abolished in a ccpA mutant. An operator structure similar to those upstream of amyE and the xyl operon was found and was shown by site-directed mutagenesis to be the target for carbon catabolite repression of beta-glucanase synthesis. The presence of this operator on a multi-copy plasmid resulted in a reduced repression of both beta-glucanase and alpha-amylase synthesis. It seems likely that the gene encoding these enzymes are part of one regulon with respect to catabolite repression.</p>","PeriodicalId":15884,"journal":{"name":"Journal of general microbiology","volume":"139 9","pages":"2047-54"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1099/00221287-139-9-2047","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of general microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/00221287-139-9-2047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
beta-Glucanase synthesis in Bacillus subtilis was repressed by glucose and other substrates of glycolysis. Experiments with different pts mutants showed that the phosphoenolpyruvate: sugar phosphotransferase system is not involved in carbon catabolite repression of beta-glucanase synthesis. Carbon catabolite repression of beta-glucanase synthesis was completely abolished in a ccpA mutant. An operator structure similar to those upstream of amyE and the xyl operon was found and was shown by site-directed mutagenesis to be the target for carbon catabolite repression of beta-glucanase synthesis. The presence of this operator on a multi-copy plasmid resulted in a reduced repression of both beta-glucanase and alpha-amylase synthesis. It seems likely that the gene encoding these enzymes are part of one regulon with respect to catabolite repression.