{"title":"Acoustic pattern recognition of /s/ misarticulation by the self-organizing map.","authors":"R Mujunen, L Leinonen, J Kangas, K Torkkola","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The [s] samples of 11 women, psychoacoustically classified as acceptable/unacceptable, were studied with the self-organizing map, the neural network algorithm of Kohonen. The measurement map had been previously computed with nondisordered speech samples. Fifteen-component spectral vectors, analyzed with the map, were calculated from short-time FFT spectra at 10-ms intervals. The degree of audible acceptability correlated with the location of the sample on the map. Spectral model vectors in different map locations depicted distinguishing spectral features in the [s] samples analyzed. The results demonstrate that self-organized maps are suitable for the extraction and measurement of acoustic features underlying psychoacoustic classifications, and for on-line visual imaging of speech.</p>","PeriodicalId":75855,"journal":{"name":"Folia phoniatrica","volume":"45 3","pages":"135-44"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia phoniatrica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The [s] samples of 11 women, psychoacoustically classified as acceptable/unacceptable, were studied with the self-organizing map, the neural network algorithm of Kohonen. The measurement map had been previously computed with nondisordered speech samples. Fifteen-component spectral vectors, analyzed with the map, were calculated from short-time FFT spectra at 10-ms intervals. The degree of audible acceptability correlated with the location of the sample on the map. Spectral model vectors in different map locations depicted distinguishing spectral features in the [s] samples analyzed. The results demonstrate that self-organized maps are suitable for the extraction and measurement of acoustic features underlying psychoacoustic classifications, and for on-line visual imaging of speech.