Volume-dependent potassium transport in camel red blood cells.

N S Gharaibeh, N M Rawashdeh
{"title":"Volume-dependent potassium transport in camel red blood cells.","authors":"N S Gharaibeh,&nbsp;N M Rawashdeh","doi":"10.3109/09687689309150257","DOIUrl":null,"url":null,"abstract":"<p><p>In this study the volume-dependent, ouabain-resistant K+ influx and efflux in camel red blood cells were measured with the tracer 86Rb+. The results showed that the camel erythrocytes do not have the Na(+)-K+ cotransport. The cell swelling increases a ouabain-resistant K+ influx and shrinkage decreases it nearly two-fold. The swelling-stimulated K+ influx and efflux were chloride dependent. The anion dependence of K+ influx in swollen cells was as follows: Br- > Cl- > NO3. The pH-dependent curve for swelling-stimulated potassium influx, and the active K+ influx in camel erythrocytes were determined. The findings indicate that camel erythrocytes' potassium transport system has many similarities to other mammalian species.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"10 2","pages":"99-106"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687689309150257","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687689309150257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study the volume-dependent, ouabain-resistant K+ influx and efflux in camel red blood cells were measured with the tracer 86Rb+. The results showed that the camel erythrocytes do not have the Na(+)-K+ cotransport. The cell swelling increases a ouabain-resistant K+ influx and shrinkage decreases it nearly two-fold. The swelling-stimulated K+ influx and efflux were chloride dependent. The anion dependence of K+ influx in swollen cells was as follows: Br- > Cl- > NO3. The pH-dependent curve for swelling-stimulated potassium influx, and the active K+ influx in camel erythrocytes were determined. The findings indicate that camel erythrocytes' potassium transport system has many similarities to other mammalian species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骆驼红细胞中钾的体积依赖性运输。
本研究用示踪剂86Rb+测定了骆驼红细胞中体积依赖性、耐瓦巴因的K+内流和外排。结果表明,骆驼红细胞不存在Na(+)-K+共转运。细胞肿胀增加抗瓦巴因的K+内流,收缩使其减少近两倍。肿胀刺激的K+内流和流出依赖于氯化物。肿胀细胞中K+内流的阴离子依赖性为Br- > Cl- > NO3。测定了骆驼红细胞肿胀刺激钾内流和活性钾内流的ph依赖性曲线。研究结果表明,骆驼红细胞钾转运系统与其他哺乳动物有许多相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties of the ryanodine receptor present in the sarcoplasmic reticulum from lobster skeletal muscle. Uncoupling of occlusion from ATP hydrolysis activity in sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase. Use of the fluorescent probe Laurdan to investigate structural organization of the vesicular stomatitis virus (VSV) membrane. Inactivation of firefly luciferase and rat erythrocyte ATPase by ultrasound. Effect of free radical scavengers on changes in ion conductance during exposure to therapeutic ultrasound.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1