Synthetic cell-adhesive laminin peptide YIGSR conjugated with polyethylene glycol has improved antimetastatic activity due to a longer half-life in blood.
Y Kaneda, S Yamamoto, T Kihira, Y Tsutsumi, S Nakagawa, M Miyake, K Kawasaki, T Mayumi
{"title":"Synthetic cell-adhesive laminin peptide YIGSR conjugated with polyethylene glycol has improved antimetastatic activity due to a longer half-life in blood.","authors":"Y Kaneda, S Yamamoto, T Kihira, Y Tsutsumi, S Nakagawa, M Miyake, K Kawasaki, T Mayumi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study was conducted to determine the mechanisms for the enhanced inhibitory effect of cell-adhesive peptides conjugated to polyethylene glycol (PEG) on tumor metastasis. Tyr-Ile-Gly-Ser-Arg (YIGSR), a laminin-derived peptide, conjugated with amino-PEG (YIGSR-aPEG) inhibited lung metastasis of B16-BL6 melanoma cells more effectively than unconjugated YIGSR peptide. [125I]-YIGSR-aPEG and native [125I]-YIGSR showed similar biphasic elimination and profiles after intravenous injection into C57BL/6 mice. Both [125I]-YIGSR and [125I]-YIGSR-aPEG expressed similar plasma half-lives and organ distributions. The radioactivity of both compounds was transported rapidly from the blood to the kidneys, and immediately excreted into the urine. [125I]-YIGSR was almost completely degraded in the urine, but [125I]-YIGSR-aPEG was not. In an in vitro stability assay, [125I]-YIGSR was degraded immediately upon incubation with mouse serum, whereas [125I]-YIGSR-aPEG was not degraded after 180 min incubation in mouse serum. These findings indicate that the enhanced inhibitory effect of YIGSR-aPEG on lung metastasis might be due to its increased stability in the blood.</p>","PeriodicalId":14452,"journal":{"name":"Invasion & metastasis","volume":"15 3-4","pages":"156-62"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invasion & metastasis","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted to determine the mechanisms for the enhanced inhibitory effect of cell-adhesive peptides conjugated to polyethylene glycol (PEG) on tumor metastasis. Tyr-Ile-Gly-Ser-Arg (YIGSR), a laminin-derived peptide, conjugated with amino-PEG (YIGSR-aPEG) inhibited lung metastasis of B16-BL6 melanoma cells more effectively than unconjugated YIGSR peptide. [125I]-YIGSR-aPEG and native [125I]-YIGSR showed similar biphasic elimination and profiles after intravenous injection into C57BL/6 mice. Both [125I]-YIGSR and [125I]-YIGSR-aPEG expressed similar plasma half-lives and organ distributions. The radioactivity of both compounds was transported rapidly from the blood to the kidneys, and immediately excreted into the urine. [125I]-YIGSR was almost completely degraded in the urine, but [125I]-YIGSR-aPEG was not. In an in vitro stability assay, [125I]-YIGSR was degraded immediately upon incubation with mouse serum, whereas [125I]-YIGSR-aPEG was not degraded after 180 min incubation in mouse serum. These findings indicate that the enhanced inhibitory effect of YIGSR-aPEG on lung metastasis might be due to its increased stability in the blood.