{"title":"G proteins in carotid body chemoreception.","authors":"N R Prabhakar, Y R Kou, G K Kumar","doi":"10.1159/000109452","DOIUrl":null,"url":null,"abstract":"<p><p>G proteins are signal coupling molecules that play major roles in mediating the effects of transmitters as well as certain sensory signals. In the present study we examined whether oxygen chemoreception in the carotid body is coupled to G proteins. Experiments were performed on carotid bodies isolated from anesthetized cats. Presence of G proteins was examined with ADP-ribosylation of the carotid body membranes. Pertussis toxin (PTX), which inactivates G proteins in neuronal tissues, ADP-ribosylated a single band of carotid body protein with a molecular mass of 41 kDa. With cholera toxin (CTX) only a faint band of protein corresponding to approximately 45 kDa was evident. Perfusing the isolated carotid bodies with PTX (2.5 micrograms/min; 60 min) attenuated the sensory response to hypoxia by 52% of the controls. Perfusion with CTX (50 micrograms/min; for 60 min), on the other hand, increased baseline activity and potentiated the hypoxic response by 125% of controls. Heat-inactivated toxins, however, had no influence on the carotid body sensory response to hypoxia. These results suggest that G proteins are present in the chemoreceptor tissue and they seem to be coupled to the transduction and/or to the transmission of the hypoxic stimulus.</p>","PeriodicalId":9265,"journal":{"name":"Biological signals","volume":"4 5","pages":"271-6"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000109452","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000109452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
G proteins are signal coupling molecules that play major roles in mediating the effects of transmitters as well as certain sensory signals. In the present study we examined whether oxygen chemoreception in the carotid body is coupled to G proteins. Experiments were performed on carotid bodies isolated from anesthetized cats. Presence of G proteins was examined with ADP-ribosylation of the carotid body membranes. Pertussis toxin (PTX), which inactivates G proteins in neuronal tissues, ADP-ribosylated a single band of carotid body protein with a molecular mass of 41 kDa. With cholera toxin (CTX) only a faint band of protein corresponding to approximately 45 kDa was evident. Perfusing the isolated carotid bodies with PTX (2.5 micrograms/min; 60 min) attenuated the sensory response to hypoxia by 52% of the controls. Perfusion with CTX (50 micrograms/min; for 60 min), on the other hand, increased baseline activity and potentiated the hypoxic response by 125% of controls. Heat-inactivated toxins, however, had no influence on the carotid body sensory response to hypoxia. These results suggest that G proteins are present in the chemoreceptor tissue and they seem to be coupled to the transduction and/or to the transmission of the hypoxic stimulus.