Possible role of coupling between glomus cells in carotid body chemoreception.

C Eyzaguirre, V Abudara
{"title":"Possible role of coupling between glomus cells in carotid body chemoreception.","authors":"C Eyzaguirre,&nbsp;V Abudara","doi":"10.1159/000109451","DOIUrl":null,"url":null,"abstract":"<p><p>Glomus cells of the carotid body are dye and electrically coupled due to the presence of gap junctions between them. During stimulation by hypoxia, hypercapnia and acidity, about 70% of the cells uncouple to various degrees, whereas the rest either develop tighter coupling or are unaffected. Similar results have been obtained with exogenous administrations of naturally present transmitters such as dopamine and cholinergic substances. Uncoupling is associated with a decrease in junctional conductance and closing of intercellular channels. Tighter coupling is accompanied by opposite effects on these parameters. We think that cell isolation uncoupling leads to release of larger amounts of transmitters toward the carotid nerve sensory terminals. Tighter coupling would reduce the quantities of released chemicals. We may have a delicate titration process modulating the sensory discharge frequency, since a single sensory fiber divides to innervate up to 20 glomus cells. Thus, the discharge frequency of this fiber (the sensory unit) will result from the contributions of its many branches, each impinging on variously active glomus cells.</p>","PeriodicalId":9265,"journal":{"name":"Biological signals","volume":"4 5","pages":"263-70"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000109451","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000109451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Glomus cells of the carotid body are dye and electrically coupled due to the presence of gap junctions between them. During stimulation by hypoxia, hypercapnia and acidity, about 70% of the cells uncouple to various degrees, whereas the rest either develop tighter coupling or are unaffected. Similar results have been obtained with exogenous administrations of naturally present transmitters such as dopamine and cholinergic substances. Uncoupling is associated with a decrease in junctional conductance and closing of intercellular channels. Tighter coupling is accompanied by opposite effects on these parameters. We think that cell isolation uncoupling leads to release of larger amounts of transmitters toward the carotid nerve sensory terminals. Tighter coupling would reduce the quantities of released chemicals. We may have a delicate titration process modulating the sensory discharge frequency, since a single sensory fiber divides to innervate up to 20 glomus cells. Thus, the discharge frequency of this fiber (the sensory unit) will result from the contributions of its many branches, each impinging on variously active glomus cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管球细胞耦合在颈动脉体化疗接受中的可能作用。
颈动脉体的血管球细胞由于它们之间存在间隙连接而呈染色和电偶联。在缺氧、高碳酸血症和酸性刺激下,大约70%的细胞不同程度地不偶联,而其余的细胞要么发展成更紧密的偶联,要么不受影响。类似的结果已获得外源性管理自然存在的递质,如多巴胺和胆碱能物质。解耦与结电导的降低和细胞间通道的关闭有关。更紧密的耦合会对这些参数产生相反的影响。我们认为,细胞分离解偶联导致向颈神经感觉终端释放大量递质。更紧密的耦合将减少释放的化学物质的数量。我们可能有一个精细的滴定过程调节感觉放电频率,因为一根感觉纤维分裂支配多达20个血管球细胞。因此,这种纤维(感觉单元)的放电频率将由其许多分支的贡献决定,每个分支都冲击各种活跃的血管球细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melatonin involvement in immunity and cancer 'Biological signals' to 'biological signals and receptors' Hypothalamic relationships between interleukin-6 and LHRH release affected by bacterial endotoxin in adult male rats. Involvement of the inhibitory amino acid system Circadian rhythms in adenohypophysial hormone levels and hypothalamic monoamine turnover in mycobacterial-adjuvant-injected rats Acute and chronic effects of superior cervical ganglionectomy on in vitro mitogenic responses of lymphocytes from submaxillary lymph nodes of pituitary-grafted rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1