Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs

IF 2.5 Q1 Chemistry Analytica Chimica Acta: X Pub Date : 2020-11-01 DOI:10.1016/j.acax.2020.100059
Felix Weihs , Jian Wang , Kevin D.G. Pfleger , Helen Dacres
{"title":"Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs","authors":"Felix Weihs ,&nbsp;Jian Wang ,&nbsp;Kevin D.G. Pfleger ,&nbsp;Helen Dacres","doi":"10.1016/j.acax.2020.100059","DOIUrl":null,"url":null,"abstract":"<div><p>Bioluminescence Resonance Energy Transfer (BRET) is widely applied to study protein-protein interactions, as well as increasingly to monitor both ligand binding and molecular rearrangements. The Förster distance (R<sub>0</sub>) describes the physical distance between the two chromophores at which 50% of the maximal energy transfer occurs and it depends on the choice of RET components. R<sub>0</sub> can be experimentally determined using flexible peptide linkers of known lengths to separate the two chromophores. Knowledge of the R<sub>0</sub> helps to inform on the choice of BRET system. For example, we have previously shown that BRET<sup>2</sup> exhibits the largest R<sub>0</sub> to date for any genetically encoded RET pair, which may be advantageous for investigating large macromolecular complexes if its issues of low and fast-decaying bioluminescence signal can be accommodated.</p><p>In this study we have determined R<sub>0</sub> for a range of bright and red-shifted BRET pairs, including NanoBRET with tetramethylrhodamine (TMR), non-chloro TOM (NCT), mCherry or Venus as acceptor, and BRET<sup>6</sup>, a red-shifted BRET<sup>2</sup>-like system. This study revealed R<sub>0</sub> values of 6.15 nm and 6.94 nm for NanoBRET using TMR or NCT as acceptor ligands, respectively. R<sub>0</sub> was 5.43 nm for NanoLuc-mCherry, 5.59 nm for NanoLuc-Venus and 5.47 nm for BRET<sup>6</sup>. This extends the palette of available BRET Förster distances, to give researchers a better-informed choice when considering BRET systems and points towards NanoBRET with NCT as a good alternative to BRET<sup>2</sup> as an analysis tool for large macromolecular complexes.</p></div>","PeriodicalId":241,"journal":{"name":"Analytica Chimica Acta: X","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.acax.2020.100059","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590134620300219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 7

Abstract

Bioluminescence Resonance Energy Transfer (BRET) is widely applied to study protein-protein interactions, as well as increasingly to monitor both ligand binding and molecular rearrangements. The Förster distance (R0) describes the physical distance between the two chromophores at which 50% of the maximal energy transfer occurs and it depends on the choice of RET components. R0 can be experimentally determined using flexible peptide linkers of known lengths to separate the two chromophores. Knowledge of the R0 helps to inform on the choice of BRET system. For example, we have previously shown that BRET2 exhibits the largest R0 to date for any genetically encoded RET pair, which may be advantageous for investigating large macromolecular complexes if its issues of low and fast-decaying bioluminescence signal can be accommodated.

In this study we have determined R0 for a range of bright and red-shifted BRET pairs, including NanoBRET with tetramethylrhodamine (TMR), non-chloro TOM (NCT), mCherry or Venus as acceptor, and BRET6, a red-shifted BRET2-like system. This study revealed R0 values of 6.15 nm and 6.94 nm for NanoBRET using TMR or NCT as acceptor ligands, respectively. R0 was 5.43 nm for NanoLuc-mCherry, 5.59 nm for NanoLuc-Venus and 5.47 nm for BRET6. This extends the palette of available BRET Förster distances, to give researchers a better-informed choice when considering BRET systems and points towards NanoBRET with NCT as a good alternative to BRET2 as an analysis tool for large macromolecular complexes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米纳米共振能量转移(nanoobret)和红移BRET对生物发光共振能量转移(BRET) Förster距离的实验测定
生物发光共振能量转移(BRET)被广泛应用于蛋白质相互作用的研究,并越来越多地用于监测配体结合和分子重排。Förster距离(R0)描述了两个发色团之间发生最大能量转移的50%的物理距离,它取决于RET组分的选择。R0可以用已知长度的柔性肽连接物来分离两个发色团。了解R0有助于了解BRET系统的选择。例如,我们之前已经表明,在任何遗传编码的RET对中,BRET2表现出迄今为止最大的R0,如果能够适应其低和快速衰减的生物发光信号问题,这可能有利于研究大型大分子复合物。在这项研究中,我们确定了一系列明亮和红移BRET对的R0,包括以四甲基罗达明(TMR)、非氯TOM (NCT)、mCherry或Venus为受体的NanoBRET,以及BRET6(一种红移bret2样体系)。本研究发现,以TMR和NCT为受体配体的NanoBRET的R0值分别为6.15 nm和6.94 nm。NanoLuc-mCherry的R0为5.43 nm, NanoLuc-Venus的R0为5.59 nm, BRET6的R0为5.47 nm。这扩展了可用BRET Förster距离的调色板,为研究人员在考虑BRET系统时提供了更明智的选择,并指出具有NCT的NanoBRET作为大型大分子复合物分析工具的BRET2的良好替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytica Chimica Acta: X
Analytica Chimica Acta: X Chemistry-Analytical Chemistry
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊最新文献
Editorial Board Outside Front Cover Reconciling the pHe measurements of bioethanol: pHabs measurements of buffered 50-50 wt% water-ethanol mixtures Outside Front Cover Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1