Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae.

G Caponigro, R Parker
{"title":"Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae.","authors":"G Caponigro, R Parker","doi":"10.1128/mr.60.1.233-249.1996","DOIUrl":null,"url":null,"abstract":"INTRODUCTION .......................................................................................................................................................233 METHODS FOR STUDYING mRNA TURNOVER IN S. CEREVISIAE ...........................................................234 Approach to Steady-State Labeling......................................................................................................................234 Inhibition of Transcription by Using Drugs .......................................................................................................234 Inhibition of Transcription by Using a Conditional Allele of RNA Polymerase II.......................................234 Inhibition of Transcription by Using Regulated Promoters.............................................................................235 Transcriptional Pulse-Chase: a Method for Examining Pathways of Decay..................................................235 Identification of Intermediates in mRNA Decay ................................................................................................235 DETERMINANTS OF mRNA STABILITY IN S. CEREVISIAE ..........................................................................236 Specific Sequences Influence mRNA Half-Lives.................................................................................................236 Nonspecific Features of mRNAs Generally Do Not Influence mRNA Half-Lives .........................................237 There is no correlation between mRNA length and stability .......................................................................237 Ribosome protection cannot account for mRNA half-lives...........................................................................237 Rare codons are not general determinants of mRNA stability ....................................................................238 A COMMON PATHWAY OF mRNA DECAY........................................................................................................238 Deadenylation Precedes the Decay of Some Yeast mRNAs ..............................................................................238 Decapping and 5*-to-3* Exonucleolytic Digestion Follow Deadenylation of Some Yeast mRNAs...............239 Deadenylation-Dependent Decapping Is a Common Pathway of mRNA Decay ............................................239 Control of mRNA Half-Lives through the Deadenylation-Dependent Decapping Pathway .........................240 Control of mRNA deadenylation ......................................................................................................................240 (i) Poly(A)-binding protein influences deadenylation................................................................................240 (ii) Poly(A)-binding protein-dependent nuclease activity from S. cerevisiae ..........................................240 (iii) Other proteins possibly involved in deadenylation............................................................................240 (iv) Models of poly(A) shortening ................................................................................................................240 (v) Terminal deadenylation is not a rate-determining step for 5*-to-3* decay ......................................241 Control of mRNA decapping .............................................................................................................................241 (i) The Pab1p-poly(A) tail complex inhibits mRNA decapping ...............................................................241 (ii) Control of decapping after deadenylation ............................................................................................242 (iii) Decapping activities from S. cerevisiae .................................................................................................242 (iv) Translation and mRNA decapping .......................................................................................................242 ADDITIONAL PATHWAYS OF mRNA DECAY IN S. CEREVISIAE .................................................................243 3*-to-5* mRNA Decay..............................................................................................................................................243 Endonucleolytic Cleavage of mRNAs ...................................................................................................................243 mRNA Surveillance: Rapid Deadenylation-Independent Decapping...............................................................243 Early nonsense codons trigger mRNA decapping ..........................................................................................243 Recognition of early nonsense codons .............................................................................................................244 (i) Specific sequences are required 3* of early nonsense codons.............................................................244 (ii) Specific upstream elements partially block nonsense codon-mediated decay .................................245 trans-Acting factors in nonsense codon-mediated mRNA decay ..................................................................245 Where in the cell does recognition of an early nonsense codon occur?......................................................246 REGULATED mRNA TURNOVER IN S. CEREVISIAE.......................................................................................246 CONCLUSIONS .........................................................................................................................................................246 REFERENCES ............................................................................................................................................................246","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 1","pages":"233-49"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239426/pdf/600233.pdf","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/mr.60.1.233-249.1996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

INTRODUCTION .......................................................................................................................................................233 METHODS FOR STUDYING mRNA TURNOVER IN S. CEREVISIAE ...........................................................234 Approach to Steady-State Labeling......................................................................................................................234 Inhibition of Transcription by Using Drugs .......................................................................................................234 Inhibition of Transcription by Using a Conditional Allele of RNA Polymerase II.......................................234 Inhibition of Transcription by Using Regulated Promoters.............................................................................235 Transcriptional Pulse-Chase: a Method for Examining Pathways of Decay..................................................235 Identification of Intermediates in mRNA Decay ................................................................................................235 DETERMINANTS OF mRNA STABILITY IN S. CEREVISIAE ..........................................................................236 Specific Sequences Influence mRNA Half-Lives.................................................................................................236 Nonspecific Features of mRNAs Generally Do Not Influence mRNA Half-Lives .........................................237 There is no correlation between mRNA length and stability .......................................................................237 Ribosome protection cannot account for mRNA half-lives...........................................................................237 Rare codons are not general determinants of mRNA stability ....................................................................238 A COMMON PATHWAY OF mRNA DECAY........................................................................................................238 Deadenylation Precedes the Decay of Some Yeast mRNAs ..............................................................................238 Decapping and 5*-to-3* Exonucleolytic Digestion Follow Deadenylation of Some Yeast mRNAs...............239 Deadenylation-Dependent Decapping Is a Common Pathway of mRNA Decay ............................................239 Control of mRNA Half-Lives through the Deadenylation-Dependent Decapping Pathway .........................240 Control of mRNA deadenylation ......................................................................................................................240 (i) Poly(A)-binding protein influences deadenylation................................................................................240 (ii) Poly(A)-binding protein-dependent nuclease activity from S. cerevisiae ..........................................240 (iii) Other proteins possibly involved in deadenylation............................................................................240 (iv) Models of poly(A) shortening ................................................................................................................240 (v) Terminal deadenylation is not a rate-determining step for 5*-to-3* decay ......................................241 Control of mRNA decapping .............................................................................................................................241 (i) The Pab1p-poly(A) tail complex inhibits mRNA decapping ...............................................................241 (ii) Control of decapping after deadenylation ............................................................................................242 (iii) Decapping activities from S. cerevisiae .................................................................................................242 (iv) Translation and mRNA decapping .......................................................................................................242 ADDITIONAL PATHWAYS OF mRNA DECAY IN S. CEREVISIAE .................................................................243 3*-to-5* mRNA Decay..............................................................................................................................................243 Endonucleolytic Cleavage of mRNAs ...................................................................................................................243 mRNA Surveillance: Rapid Deadenylation-Independent Decapping...............................................................243 Early nonsense codons trigger mRNA decapping ..........................................................................................243 Recognition of early nonsense codons .............................................................................................................244 (i) Specific sequences are required 3* of early nonsense codons.............................................................244 (ii) Specific upstream elements partially block nonsense codon-mediated decay .................................245 trans-Acting factors in nonsense codon-mediated mRNA decay ..................................................................245 Where in the cell does recognition of an early nonsense codon occur?......................................................246 REGULATED mRNA TURNOVER IN S. CEREVISIAE.......................................................................................246 CONCLUSIONS .........................................................................................................................................................246 REFERENCES ............................................................................................................................................................246
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酿酒酵母mRNA转换的机制及调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton-dependent multidrug efflux systems. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). The secretory pathway of protists: spatial and functional organization and evolution. T helper cell activation and human retroviral pathogenesis. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1