{"title":"Dilazep inhibits binding of batrachotoxin to sodium channels in canine sarcolemmal vesicles.","authors":"K Chiba, H Hashizume, S I Inagaki, Y Abiko","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We studied the effect of dilazep on the binding of [3H]- batrachotoxinin A 20 alpha-benzoate ([3H]BTXB), which binds to and stabilizes the activated state of the Na+ channel, and compared it with that of lidocaine in canine cardiac sarcolemmal vesicles. Dilazep inhibited the specific [3H]BTXB binding in a dose-dependent manner with an IC50 value of 0.37 microM, while lidocaine inhibited it with an IC50 value of 92 microM. Scatchard analysis of [3H]BTXB binding demonstrated that both dilazep and lidocaine reduced the amax without a marked effect on the K(D). The inhibition of [3H]BTXB induced by dilazep was reversible. Both dilazep (4 microM) and lidocaine (100 microM) increased the dissociation rate constant of [3H]BTXB only in concentrations which are about a 10-fold greater than their IC50, indicating the low affinity of both drugs for the [3H]BTXB-bound Na+ channel. However, dilazep (0.5 microM) and lidocaine (100 microM) decreased significantly the association rate constant of the [3H]BTXB binding at concentrations near their IC50, indicating that the affinity of both drugs for the [3H]BTXB-unbound Na+ channel is relatively high. These results suggest that, in canine cardiac membrane vesicles, the effect of dilazep in inhibiting the binding of [3H]BTXB and stabilizing the Na+ channel is similar to that of lidocaine, but the potency of dilazep is greater than that of lidocaine.</p>","PeriodicalId":8166,"journal":{"name":"Archives internationales de pharmacodynamie et de therapie","volume":"330 2","pages":"138-50"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de pharmacodynamie et de therapie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We studied the effect of dilazep on the binding of [3H]- batrachotoxinin A 20 alpha-benzoate ([3H]BTXB), which binds to and stabilizes the activated state of the Na+ channel, and compared it with that of lidocaine in canine cardiac sarcolemmal vesicles. Dilazep inhibited the specific [3H]BTXB binding in a dose-dependent manner with an IC50 value of 0.37 microM, while lidocaine inhibited it with an IC50 value of 92 microM. Scatchard analysis of [3H]BTXB binding demonstrated that both dilazep and lidocaine reduced the amax without a marked effect on the K(D). The inhibition of [3H]BTXB induced by dilazep was reversible. Both dilazep (4 microM) and lidocaine (100 microM) increased the dissociation rate constant of [3H]BTXB only in concentrations which are about a 10-fold greater than their IC50, indicating the low affinity of both drugs for the [3H]BTXB-bound Na+ channel. However, dilazep (0.5 microM) and lidocaine (100 microM) decreased significantly the association rate constant of the [3H]BTXB binding at concentrations near their IC50, indicating that the affinity of both drugs for the [3H]BTXB-unbound Na+ channel is relatively high. These results suggest that, in canine cardiac membrane vesicles, the effect of dilazep in inhibiting the binding of [3H]BTXB and stabilizing the Na+ channel is similar to that of lidocaine, but the potency of dilazep is greater than that of lidocaine.