Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network

Jzau-Sheng Lin , Kuo-Sheng Cheng , Chi-Wu Mao
{"title":"Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network","authors":"Jzau-Sheng Lin ,&nbsp;Kuo-Sheng Cheng ,&nbsp;Chi-Wu Mao","doi":"10.1016/0020-7101(96)01199-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper demonstrates a fuzzy Hopfield neural network for segmenting multispectral MR brain images. The proposed approach is a new unsupervised 2-D Hopfield neural network based upon the fuzzy clustering technique. Its implementation consists of the combination of 2-D Hopfield neural network and fuzzy c-means clustering algorithm in order to make parallel implementation for segmenting multispectral MR brain images feasible. For generating feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need for finding weighting factors in the energy function which is formulated and based on a basic concept commonly used in pattern classification, called the ‘within-class scatter matrix’ principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The experimental results show that a near optimal solution can be obtained using the fuzzy Hopfield neural network based on the within-class scatter matrix.</p></div>","PeriodicalId":75935,"journal":{"name":"International journal of bio-medical computing","volume":"42 3","pages":"Pages 205-214"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-7101(96)01199-3","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of bio-medical computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020710196011993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

This paper demonstrates a fuzzy Hopfield neural network for segmenting multispectral MR brain images. The proposed approach is a new unsupervised 2-D Hopfield neural network based upon the fuzzy clustering technique. Its implementation consists of the combination of 2-D Hopfield neural network and fuzzy c-means clustering algorithm in order to make parallel implementation for segmenting multispectral MR brain images feasible. For generating feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need for finding weighting factors in the energy function which is formulated and based on a basic concept commonly used in pattern classification, called the ‘within-class scatter matrix’ principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The experimental results show that a near optimal solution can be obtained using the fuzzy Hopfield neural network based on the within-class scatter matrix.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊Hopfield神经网络的多光谱磁共振图像分割
提出了一种模糊Hopfield神经网络分割多光谱脑磁共振图像的方法。该方法是一种基于模糊聚类技术的新型无监督二维Hopfield神经网络。该算法将二维Hopfield神经网络与模糊c均值聚类算法相结合,实现了多光谱脑磁共振图像分割的并行实现。为了产生可行的结果,Hopfield神经网络中包含了一个模糊c均值聚类策略,以消除在能量函数中寻找加权因子的需要,该策略是基于模式分类中常用的一个基本概念,称为“类内散点矩阵”原则而制定的。所提出的模糊c均值聚类策略也被证明是收敛的,并且允许网络比传统的Hopfield神经网络更有效地学习。实验结果表明,基于类内散点矩阵的模糊Hopfield神经网络可以获得近似最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Diagnosing in Large Medical Expert Systems Based on Causal Probabilistic Networks Subject index Volume contents Editorial Author index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1