{"title":"Topological requirements for recognition and cleavage of DNA by ribosome-inactivating proteins.","authors":"J Ling, X Li, X Wu, W Liu","doi":"10.1515/bchm3.1995.376.11.637","DOIUrl":null,"url":null,"abstract":"<p><p>Ribosome-inactivating proteins (RIPs) were demonstrated to exhibit a unique enzymatic activity on cleaving supercoiled double-stranded DNA into the nicked or linear form. Although there is an interaction between supercoiled DNA and RIP, no sequence-specific recognition was involved. Instead, RIPs recognize supercoiled DNA by conformational specificity. Negatively supercoiled DNA is the preferential conformation in the action of RIPs. When double-stranded DNA occurs in the supercoiled form, even if with lower linking number, RIPs can still convert it into nicked or linear form. Terminal-labelling experiments indicated that radioactivity was incorporated into putative 5'-ends of nicked or linear DNA generated by RIPs. We conclude that RIPs act as a novel supercoil-dependent endonuclease when they cleavage supercoiled DNA. The impossibility that contaminating enzymes in the RIP preparations cleaved the supercoiled DNA is briefly discussed.</p>","PeriodicalId":8963,"journal":{"name":"Biological chemistry Hoppe-Seyler","volume":"376 11","pages":"637-41"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bchm3.1995.376.11.637","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological chemistry Hoppe-Seyler","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bchm3.1995.376.11.637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Ribosome-inactivating proteins (RIPs) were demonstrated to exhibit a unique enzymatic activity on cleaving supercoiled double-stranded DNA into the nicked or linear form. Although there is an interaction between supercoiled DNA and RIP, no sequence-specific recognition was involved. Instead, RIPs recognize supercoiled DNA by conformational specificity. Negatively supercoiled DNA is the preferential conformation in the action of RIPs. When double-stranded DNA occurs in the supercoiled form, even if with lower linking number, RIPs can still convert it into nicked or linear form. Terminal-labelling experiments indicated that radioactivity was incorporated into putative 5'-ends of nicked or linear DNA generated by RIPs. We conclude that RIPs act as a novel supercoil-dependent endonuclease when they cleavage supercoiled DNA. The impossibility that contaminating enzymes in the RIP preparations cleaved the supercoiled DNA is briefly discussed.