Topological requirements for recognition and cleavage of DNA by ribosome-inactivating proteins.

J Ling, X Li, X Wu, W Liu
{"title":"Topological requirements for recognition and cleavage of DNA by ribosome-inactivating proteins.","authors":"J Ling,&nbsp;X Li,&nbsp;X Wu,&nbsp;W Liu","doi":"10.1515/bchm3.1995.376.11.637","DOIUrl":null,"url":null,"abstract":"<p><p>Ribosome-inactivating proteins (RIPs) were demonstrated to exhibit a unique enzymatic activity on cleaving supercoiled double-stranded DNA into the nicked or linear form. Although there is an interaction between supercoiled DNA and RIP, no sequence-specific recognition was involved. Instead, RIPs recognize supercoiled DNA by conformational specificity. Negatively supercoiled DNA is the preferential conformation in the action of RIPs. When double-stranded DNA occurs in the supercoiled form, even if with lower linking number, RIPs can still convert it into nicked or linear form. Terminal-labelling experiments indicated that radioactivity was incorporated into putative 5'-ends of nicked or linear DNA generated by RIPs. We conclude that RIPs act as a novel supercoil-dependent endonuclease when they cleavage supercoiled DNA. The impossibility that contaminating enzymes in the RIP preparations cleaved the supercoiled DNA is briefly discussed.</p>","PeriodicalId":8963,"journal":{"name":"Biological chemistry Hoppe-Seyler","volume":"376 11","pages":"637-41"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bchm3.1995.376.11.637","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological chemistry Hoppe-Seyler","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bchm3.1995.376.11.637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Ribosome-inactivating proteins (RIPs) were demonstrated to exhibit a unique enzymatic activity on cleaving supercoiled double-stranded DNA into the nicked or linear form. Although there is an interaction between supercoiled DNA and RIP, no sequence-specific recognition was involved. Instead, RIPs recognize supercoiled DNA by conformational specificity. Negatively supercoiled DNA is the preferential conformation in the action of RIPs. When double-stranded DNA occurs in the supercoiled form, even if with lower linking number, RIPs can still convert it into nicked or linear form. Terminal-labelling experiments indicated that radioactivity was incorporated into putative 5'-ends of nicked or linear DNA generated by RIPs. We conclude that RIPs act as a novel supercoil-dependent endonuclease when they cleavage supercoiled DNA. The impossibility that contaminating enzymes in the RIP preparations cleaved the supercoiled DNA is briefly discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核糖体失活蛋白识别和切割DNA的拓扑要求。
核糖体失活蛋白(RIPs)被证明在将超螺旋双链DNA切割成缺口或线性形式方面具有独特的酶活性。虽然超螺旋DNA和RIP之间存在相互作用,但不涉及序列特异性识别。相反,rip通过构象特异性识别超螺旋DNA。负超螺旋DNA是rip作用下的优先构象。当双链DNA以超螺旋形式出现时,即使连接数较低,rip仍然可以将其转化为缺口或线性形式。末端标记实验表明,放射性被纳入到由rip产生的缺口或线性DNA的假定5'端。我们得出的结论是,当它们切割超螺旋DNA时,rip作为一种新的超螺旋依赖的内切酶。简要讨论了RIP制备过程中污染酶导致超螺旋DNA断裂的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sialic acids structure-analysis-metabolism-occurrence-recognition. Glycyl-tRNA synthetase. Rapid purification and characterization of two distinct N-deoxyribosyltransferases of Lactobacillus leichmannii. Purification of the CIC-0 chloride channel from Torpedo california electroplax identification of a phosphorylation site for cAMP-dependent protein kinase. Selective inhibition of cyclic AMP-dependent protein kinase by isoquinoline derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1