{"title":"Distribution of glutamine synthetase in the chick forebrain: implications for passive avoidance memory formation.","authors":"B S O'Dowd, K T Ng, S R Robinson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The glial enzyme glutamine synthetase (GS) converts glutamate to glutamine; the latter is used by neurons for the resynthesis of glutamate and GABA. We have used a monoclonal antibody to GS to examine the regional distribution of this enzyme in the forebrains of day-old chicks. GS was detected in glia throughout the rostral and caudal regions of the forebrain and was particularly intense in the hippocampus, area parahippocampus and parts of the hyperstriatal and paleostriatal complex, regions widely considered to be involved in memory formation. Thus, our data provide an anatomical framework for the conclusion that neurons require the support of glia in order to restock their glutamate and/or GABA transmitter supplies during memory processing.</p>","PeriodicalId":14790,"journal":{"name":"Journal fur Hirnforschung","volume":"38 2","pages":"147-52"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur Hirnforschung","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The glial enzyme glutamine synthetase (GS) converts glutamate to glutamine; the latter is used by neurons for the resynthesis of glutamate and GABA. We have used a monoclonal antibody to GS to examine the regional distribution of this enzyme in the forebrains of day-old chicks. GS was detected in glia throughout the rostral and caudal regions of the forebrain and was particularly intense in the hippocampus, area parahippocampus and parts of the hyperstriatal and paleostriatal complex, regions widely considered to be involved in memory formation. Thus, our data provide an anatomical framework for the conclusion that neurons require the support of glia in order to restock their glutamate and/or GABA transmitter supplies during memory processing.