{"title":"Gastric emptying and plasma deuterium accumulation following ingestion of water and two carbohydrate-electrolyte beverages.","authors":"R Murray, W P Bartoli, D E Eddy, M K Horn","doi":"10.1123/ijsn.7.2.144","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to compare the gastric emptying rates (GER) of water, a 6% carbohydrate (CHO) beverage, and a 20% CHO beverage and to contrast those rates against the rate at which deuterium oxide in the drinks accumulated in plasma (DAR) following beverage ingestion. Ten subjects (8 males, 2 females) cycled at 60% VO2max for 70 min; at 13 min, the subjects ingested 400 ml of one of the beverages. The GER and DAR of water and 6% CHO were similar, while GER and DAR were both significantly slowed by ingestion of 20% CHO. Although there was a significant correlation (r = .63, p < .05) between GER and DAR, only 40% of the variation in DAR could be accounted for by variation in GER. These data support the contention that DAR is partially determined by GER, with differences in the rate of fluid absorption across the intestine and other factors accounting for the remaining variation in DAR.</p>","PeriodicalId":14321,"journal":{"name":"International journal of sport nutrition","volume":"7 2","pages":"144-53"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1123/ijsn.7.2.144","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sport nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/ijsn.7.2.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The purpose of this study was to compare the gastric emptying rates (GER) of water, a 6% carbohydrate (CHO) beverage, and a 20% CHO beverage and to contrast those rates against the rate at which deuterium oxide in the drinks accumulated in plasma (DAR) following beverage ingestion. Ten subjects (8 males, 2 females) cycled at 60% VO2max for 70 min; at 13 min, the subjects ingested 400 ml of one of the beverages. The GER and DAR of water and 6% CHO were similar, while GER and DAR were both significantly slowed by ingestion of 20% CHO. Although there was a significant correlation (r = .63, p < .05) between GER and DAR, only 40% of the variation in DAR could be accounted for by variation in GER. These data support the contention that DAR is partially determined by GER, with differences in the rate of fluid absorption across the intestine and other factors accounting for the remaining variation in DAR.