M D Cohen, S Becker, R Devlin, R B Schlesinger, J T Zelikoff
{"title":"Effects of vanadium upon polyl:C-induced responses in rat lung and alveolar macrophages.","authors":"M D Cohen, S Becker, R Devlin, R B Schlesinger, J T Zelikoff","doi":"10.1080/00984109708984046","DOIUrl":null,"url":null,"abstract":"<p><p>Hosts exposed to vanadium (V) display a subsequent decrease in their resistance to infectious microorganisms. Our earlier studies with rats inhaling occupationally relevant levels of V (as, ammonium metavanadate, NH4VO3) indicated that several nascent/inducible functions of pulmonary macrophages (PAM) were reduced. In the present study, V-exposed rats were examined to determine whether some of the same effects might also occur in situ. Rats were exposed nose-only to air or 2 mg V/m3 (as NH4VO3) for 8 h/d for 4 d, followed, 24 h later, by intratracheal (it) instillation of polyinosinic:polycytidilic acid (polyl:C) or saline. Analysis of lavaged lung cells/fluids after polyl:C instillation indicated that total lavageable cell/neutrophil numbers and protein levels, while significantly elevated in both exposure groups (as well as in saline-treated V-exposed rats), were always greater in V-exposed hosts. Exposure to V also affected the inducible production of interleukin 6 (IL-6) and interferon gamma (IFN gamma), but apparently not that of tumor necrosis factor-alpha (TNF alpha) or IL-1. Although polyl:C induced significant increases in lavage fluid IL-6 and IFN gamma levels in both exposure groups, levels were greater in V-exposed rats. If calculated with respect to total lavaged protein, however, V-exposed rats produced significantly less cytokine. Following polyl:C instillation, there were no marked exposure-related differences in basal or stimulated superoxide anion production by pooled lavaged cells or PAM specifically. With V-exposed rats, pooled cells recovered 24 h after saline instillation displayed reduced production (in both cases) compared to the air control cells; PAM-specific production was affected only after stimulation. In both exposure groups, polyl:C caused decreased superoxide production in recovered cells. Though less apparent with pooled cells, there was a time post polyl:C instillation-dependent decrease in stimulated PAM-specific superoxide production; this effect was greater in PAM from V-exposed rats than in PAM from air controls. Phagocytic activity of PAM from rats in both exposure groups was significantly increased by polyl:C instillation, although total activity in cells obtained from V-exposed rats was always significantly lower compared to air control cells. Our results indicate that short-term, repeated inhalation of occupationally relevant levels of V by rats modulates pulmonary immunocompetence. Modified cytokine production and PAM functionality in response to biological response modifiers (such as lipopolysaccharide, IFN gamma, or polyl:C) may be, at least in part, responsible for the increases in bronchopulmonary disease in humans occupationally exposed to V.</p>","PeriodicalId":17524,"journal":{"name":"Journal of toxicology and environmental health","volume":"51 6","pages":"591-608"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00984109708984046","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of toxicology and environmental health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00984109708984046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Hosts exposed to vanadium (V) display a subsequent decrease in their resistance to infectious microorganisms. Our earlier studies with rats inhaling occupationally relevant levels of V (as, ammonium metavanadate, NH4VO3) indicated that several nascent/inducible functions of pulmonary macrophages (PAM) were reduced. In the present study, V-exposed rats were examined to determine whether some of the same effects might also occur in situ. Rats were exposed nose-only to air or 2 mg V/m3 (as NH4VO3) for 8 h/d for 4 d, followed, 24 h later, by intratracheal (it) instillation of polyinosinic:polycytidilic acid (polyl:C) or saline. Analysis of lavaged lung cells/fluids after polyl:C instillation indicated that total lavageable cell/neutrophil numbers and protein levels, while significantly elevated in both exposure groups (as well as in saline-treated V-exposed rats), were always greater in V-exposed hosts. Exposure to V also affected the inducible production of interleukin 6 (IL-6) and interferon gamma (IFN gamma), but apparently not that of tumor necrosis factor-alpha (TNF alpha) or IL-1. Although polyl:C induced significant increases in lavage fluid IL-6 and IFN gamma levels in both exposure groups, levels were greater in V-exposed rats. If calculated with respect to total lavaged protein, however, V-exposed rats produced significantly less cytokine. Following polyl:C instillation, there were no marked exposure-related differences in basal or stimulated superoxide anion production by pooled lavaged cells or PAM specifically. With V-exposed rats, pooled cells recovered 24 h after saline instillation displayed reduced production (in both cases) compared to the air control cells; PAM-specific production was affected only after stimulation. In both exposure groups, polyl:C caused decreased superoxide production in recovered cells. Though less apparent with pooled cells, there was a time post polyl:C instillation-dependent decrease in stimulated PAM-specific superoxide production; this effect was greater in PAM from V-exposed rats than in PAM from air controls. Phagocytic activity of PAM from rats in both exposure groups was significantly increased by polyl:C instillation, although total activity in cells obtained from V-exposed rats was always significantly lower compared to air control cells. Our results indicate that short-term, repeated inhalation of occupationally relevant levels of V by rats modulates pulmonary immunocompetence. Modified cytokine production and PAM functionality in response to biological response modifiers (such as lipopolysaccharide, IFN gamma, or polyl:C) may be, at least in part, responsible for the increases in bronchopulmonary disease in humans occupationally exposed to V.