Influences of light-dark shifting on the immune system, tumor growth and life span of rats, mice and fruit flies as well as on the counteraction of melatonin.
{"title":"Influences of light-dark shifting on the immune system, tumor growth and life span of rats, mice and fruit flies as well as on the counteraction of melatonin.","authors":"J C Li, F Xu","doi":"10.1159/000109112","DOIUrl":null,"url":null,"abstract":"<p><p>Animal models were designed to study the changes in immune function, oncogenicity and life span of rats, mice and fruit flies following light-dark (LD) shift manipulations. Alternating the photoperiod of LD 14:10 and DL 10:14 every 3 days in rats disrupted the circadian immune rhythm pattern, decreased the blood leukocyte concentration by 48% and lowered the percentage of lymphocytes in the blood from 71% (control) to 49.2%. In mice, the phagocytosis of neutrophils was only reduced by 7%, but the level of serum hemolysin dropped significantly in the photoperiod-shifted group as compared with animals kept under a constant photoperiod of LD 12:12 or LD 14:10. In Ehrlich-carcinoma- or sarcoma-180-injected mice, a reduction of survival duration, acceleration of tumor growth and depression of the immune system were recorded in the LD-shifted animals. In addition, the life span of fruit flies was shortened by 9.6% by photoperiodic shifting. Melatonin treatment evidently counteracted the deleterious influences of photoperiodic shifting in the above animals. It is suggested that repeated inversion of the LD cycle results in a chronobiological abnormality that, in turn, induces dysfunctions. Reentrainment by exogenous melatonin may inhibit the harmful influences of photoperiodic shifting.</p>","PeriodicalId":9265,"journal":{"name":"Biological signals","volume":"6 2","pages":"77-89"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000109112","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000109112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Animal models were designed to study the changes in immune function, oncogenicity and life span of rats, mice and fruit flies following light-dark (LD) shift manipulations. Alternating the photoperiod of LD 14:10 and DL 10:14 every 3 days in rats disrupted the circadian immune rhythm pattern, decreased the blood leukocyte concentration by 48% and lowered the percentage of lymphocytes in the blood from 71% (control) to 49.2%. In mice, the phagocytosis of neutrophils was only reduced by 7%, but the level of serum hemolysin dropped significantly in the photoperiod-shifted group as compared with animals kept under a constant photoperiod of LD 12:12 or LD 14:10. In Ehrlich-carcinoma- or sarcoma-180-injected mice, a reduction of survival duration, acceleration of tumor growth and depression of the immune system were recorded in the LD-shifted animals. In addition, the life span of fruit flies was shortened by 9.6% by photoperiodic shifting. Melatonin treatment evidently counteracted the deleterious influences of photoperiodic shifting in the above animals. It is suggested that repeated inversion of the LD cycle results in a chronobiological abnormality that, in turn, induces dysfunctions. Reentrainment by exogenous melatonin may inhibit the harmful influences of photoperiodic shifting.