Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography

M Huang , C.J Aine , S Supek , E Best , D Ranken , E.R Flynn
{"title":"Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography","authors":"M Huang ,&nbsp;C.J Aine ,&nbsp;S Supek ,&nbsp;E Best ,&nbsp;D Ranken ,&nbsp;E.R Flynn","doi":"10.1016/S0168-5597(97)00091-9","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-start downhill simplex method is examined as a global minimization technique for fitting multidipole, spatio-temporal magnetoencephalography (MEG) data. This procedure has been performed on both simulated and empirical human visual data, known to exhibit complex field patterns due to multiple sources. Unlike some other non-linear fitting techniques the multi-start downhill simplex method does not require users to provide initial guesses for the dipole parameters, hence the fitting procedure is less time-consuming, more objective, and user-friendly. In addition, this method offers more than one adequate solution thus providing a range of uncertainty for the estimated parameters. The Multi-start downhill simplex method is used to fit the non-linear dipole spatial parameters, while the linear temporal parameters are fit using a separate linear fitting procedure. Singular value decomposition (SVD) is also used in order to improve the procedure for determining the adequate number of modeled dipoles.</p></div>","PeriodicalId":100401,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section","volume":"108 1","pages":"Pages 32-44"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0168-5597(97)00091-9","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168559797000919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

Abstract

A multi-start downhill simplex method is examined as a global minimization technique for fitting multidipole, spatio-temporal magnetoencephalography (MEG) data. This procedure has been performed on both simulated and empirical human visual data, known to exhibit complex field patterns due to multiple sources. Unlike some other non-linear fitting techniques the multi-start downhill simplex method does not require users to provide initial guesses for the dipole parameters, hence the fitting procedure is less time-consuming, more objective, and user-friendly. In addition, this method offers more than one adequate solution thus providing a range of uncertainty for the estimated parameters. The Multi-start downhill simplex method is used to fit the non-linear dipole spatial parameters, while the linear temporal parameters are fit using a separate linear fitting procedure. Singular value decomposition (SVD) is also used in order to improve the procedure for determining the adequate number of modeled dipoles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑磁图时空源定位的多起点下坡单纯形方法
研究了一种多起点下坡单纯形方法作为多偶极子时空脑磁图(MEG)数据拟合的全局最小化技术。该程序已在模拟和经验的人类视觉数据上执行,已知由于多个来源而表现出复杂的场模式。与其他非线性拟合技术不同,多起点下坡单纯形法不需要用户对偶极子参数进行初始猜测,因此拟合过程更省时、更客观、更人性化。此外,该方法提供了多个适当的解,从而为估计参数提供了一定范围的不确定性。多起点下坡单纯形法用于拟合非线性偶极子空间参数,而线性时间参数则通过单独的线性拟合程序进行拟合。奇异值分解(SVD)也被用于改进确定足够数量的偶极子模型的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Evoked Potentials Clinical Evoked Potentials: An Illustrated Manual Somatosensory Evoked Potentials Motor Evoked Potentials Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1