Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU.

G C Nikiforidis, G C Sakellaropoulos
{"title":"Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU.","authors":"G C Nikiforidis,&nbsp;G C Sakellaropoulos","doi":"10.3109/14639239809001387","DOIUrl":null,"url":null,"abstract":"<p><p>The present study concerns the construction and operation of a Bayesian analytical system, namely a Bayesian belief network (BBN) for the prognosis at 24 h of head-injured patients of the intensive care unit. The construction of a BBN incorporates the maintenance of a large database including all the critical variables corresponding to the specific clinical domain. This database is processed to provide the necessary libraries of conditional probability values. BBNs permit the combination of prognostic evidence in a cumulative manner and provide a quantitative measure of certainty in the final decision. The user views the changes at each step, thus being capable of deciding upon the necessary pieces of information in order to reach a certain belief threshold. The system produces results that are compatible with the opinions of medical experts regarding the prognosis of patients exhibiting certain patterns of clinical or laboratory data.</p>","PeriodicalId":76132,"journal":{"name":"Medical informatics = Medecine et informatique","volume":"23 1","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14639239809001387","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical informatics = Medecine et informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/14639239809001387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The present study concerns the construction and operation of a Bayesian analytical system, namely a Bayesian belief network (BBN) for the prognosis at 24 h of head-injured patients of the intensive care unit. The construction of a BBN incorporates the maintenance of a large database including all the critical variables corresponding to the specific clinical domain. This database is processed to provide the necessary libraries of conditional probability values. BBNs permit the combination of prognostic evidence in a cumulative manner and provide a quantitative measure of certainty in the final decision. The user views the changes at each step, thus being capable of deciding upon the necessary pieces of information in order to reach a certain belief threshold. The system produces results that are compatible with the opinions of medical experts regarding the prognosis of patients exhibiting certain patterns of clinical or laboratory data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯信念网络的专家系统支持在ICU颅脑损伤患者预后中的应用。
本研究探讨了重症监护病房颅脑损伤患者24 h预后的贝叶斯分析系统,即贝叶斯信念网络(BBN)的构建与运行。BBN的构建包括一个大型数据库的维护,其中包括与特定临床领域相对应的所有关键变量。处理该数据库以提供必要的条件概率值库。bbn允许以累积的方式结合预测证据,并为最终决策提供确定性的定量衡量。用户在每个步骤中查看更改,从而能够决定必要的信息片段,以达到某个信念阈值。该系统产生的结果与医学专家关于显示某些临床或实验室数据模式的患者预后的意见相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hippocrates: an integrated platform for telemedicine applications. A network-based training environment: a medical image processing paradigm. A multi-agent architecture for teaching dermatology. Enhancing security and improving interoperability in healthcare information systems. Backpropagation and adaptive resonance theory in predicting suicidal risk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1