{"title":"Mutation measurement in mammalian cells. IV: Comparison of gamma-ray and chemical mutagenesis.","authors":"T T Puck, R Johnson, P Webb, G Yohrling","doi":"10.1007/BF02677491","DOIUrl":null,"url":null,"abstract":"<p><p>The interaction of chemical mutagens with mammalian cells is much more complex than that of gamma-irradiation because of the different ways in which chemical agents react with cell and medium components. Nevertheless, the system previously described for analysis of mutagenesis by gamma-radiation appears applicable to chemical mutagenesis. The approach involves measurement of cell survival, use of caffeine to inhibit repair, analysis of mitotic index changes, and quantitation of microscopically visible structural changes in mitotic chromosomes. The behavior of a variety of chemical mutagens and nonmutagens in this system is described and compared with that of gamma-irradiation. The procedure is simple and the results reasonably quantitative though less so than those of gamma-irradiation. The procedure can be used for environmental monitoring, analysis of mutational events, and individual and epidemiological testing. Mutational events should be classified as primary or secondary depending on whether they represent initial genomic insult, or genomic changes resulting from primary mutation followed by structural changes due to metabolic actions. While caffeine has multiple effects on the mammalian genome, when used under the conditions specified here it appears to act principally as an inhibitor of mutation repair, and so affords a measure of the role of repair in the action of different mutagens on cells in the G2 phase of the life cycle.</p>","PeriodicalId":21884,"journal":{"name":"Somatic Cell and Molecular Genetics","volume":"24 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02677491","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatic Cell and Molecular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02677491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The interaction of chemical mutagens with mammalian cells is much more complex than that of gamma-irradiation because of the different ways in which chemical agents react with cell and medium components. Nevertheless, the system previously described for analysis of mutagenesis by gamma-radiation appears applicable to chemical mutagenesis. The approach involves measurement of cell survival, use of caffeine to inhibit repair, analysis of mitotic index changes, and quantitation of microscopically visible structural changes in mitotic chromosomes. The behavior of a variety of chemical mutagens and nonmutagens in this system is described and compared with that of gamma-irradiation. The procedure is simple and the results reasonably quantitative though less so than those of gamma-irradiation. The procedure can be used for environmental monitoring, analysis of mutational events, and individual and epidemiological testing. Mutational events should be classified as primary or secondary depending on whether they represent initial genomic insult, or genomic changes resulting from primary mutation followed by structural changes due to metabolic actions. While caffeine has multiple effects on the mammalian genome, when used under the conditions specified here it appears to act principally as an inhibitor of mutation repair, and so affords a measure of the role of repair in the action of different mutagens on cells in the G2 phase of the life cycle.