{"title":"Different sources of acidity in glucose-elicited extracellular acidification in the yeast Saccharomyces cerevisiae.","authors":"G Lapathitis, A Kotyk","doi":"10.1080/15216549800204522","DOIUrl":null,"url":null,"abstract":"<p><p>Three wild-type strains of Saccharomyces cerevisiae, viz. K, Y55 and sigma 1278b, two mutants lacking one or both of the putative K+ transporters, trk1 delta and trk1 delta trk2 delta, and a mutant in the plasma membrane H(+)-ATPase, viz. pma1-105, were compared in their extracellular acidification following addition of glucose and subsequent addition of KCl; in ATPase activity in purified plasma membranes; and in respiration on glucose. The glucose-induced acidification was the greater the higher the respiratory quotient, i.e. the higher the anaerobic metabolism. A markedly lower acidification was found in the ATPase-deficient pma1-105 strain but also in the TRK-deficient double mutant. The acidification pattern after addition of KCl corresponds to expectations in the TRK mutants; however, a similarly decreased acid production was found in the ATPase-deficient mutant pma1-105. The highest rate of ATP hydrolysis in vitro was found with the trk1 delta trk2 delta mutant where glucose-, as well as KCl-induced acidification were lowest. Likewise, the pma1-105 mutant with extremely low acidification showed only a minutely lower ATP hydrolysis than did its parent Y55 strain. Apparently, several different sources of acidity are involved in the glucose-induced acidification (including extrusion of organic acids); in fact, contrary to the general belief, the H(+)-ATPase may play a minor role in this process in some strains.</p>","PeriodicalId":8770,"journal":{"name":"Biochemistry and molecular biology international","volume":"46 5","pages":"973-8"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15216549800204522","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and molecular biology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15216549800204522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Three wild-type strains of Saccharomyces cerevisiae, viz. K, Y55 and sigma 1278b, two mutants lacking one or both of the putative K+ transporters, trk1 delta and trk1 delta trk2 delta, and a mutant in the plasma membrane H(+)-ATPase, viz. pma1-105, were compared in their extracellular acidification following addition of glucose and subsequent addition of KCl; in ATPase activity in purified plasma membranes; and in respiration on glucose. The glucose-induced acidification was the greater the higher the respiratory quotient, i.e. the higher the anaerobic metabolism. A markedly lower acidification was found in the ATPase-deficient pma1-105 strain but also in the TRK-deficient double mutant. The acidification pattern after addition of KCl corresponds to expectations in the TRK mutants; however, a similarly decreased acid production was found in the ATPase-deficient mutant pma1-105. The highest rate of ATP hydrolysis in vitro was found with the trk1 delta trk2 delta mutant where glucose-, as well as KCl-induced acidification were lowest. Likewise, the pma1-105 mutant with extremely low acidification showed only a minutely lower ATP hydrolysis than did its parent Y55 strain. Apparently, several different sources of acidity are involved in the glucose-induced acidification (including extrusion of organic acids); in fact, contrary to the general belief, the H(+)-ATPase may play a minor role in this process in some strains.