B L Stegelmeier, J A Edgar, S M Colegate, D R Gardner, T K Schoch, R A Coulombe, R J Molyneux
{"title":"Pyrrolizidine alkaloid plants, metabolism and toxicity.","authors":"B L Stegelmeier, J A Edgar, S M Colegate, D R Gardner, T K Schoch, R A Coulombe, R J Molyneux","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>More than 350 PAs have been identified in over 6,000 plants in the Boraginaceae, Compositae, and Leguminosae families (Table 1). About half of the identified PAs are toxic and several have been shown to be carcinogenic in rodents. PA-containing plants have worldwide distribution, and they probably are the most common poisonous plants affecting livestock, wildlife, and humans. In many locations, PA-containing plants are introduced species that are considered invasive, noxious weeds. Both native and introduced PA-containing plants often infest open ranges and fields, replacing nutritious plants. Many are not palatable and livestock avoid eating them if other forages are available. However, as they invade fields or crops, plant parts or seeds can contaminate prepared feeds and grains which are then readily eaten by many animals. Human poisonings most often are a result of food contamination or when PA-containing plants areused for medicinal purposes. This is a review of current information on the diagnosis, pathogenesis, and molecular mechanisms of PA toxicity. Additional discussion includes current and future research objectives with an emphasis on the development of better diagnostics, pyrrole kinetics, and the effects of low dose PA exposure.</p>","PeriodicalId":16437,"journal":{"name":"Journal of natural toxins","volume":"8 1","pages":"95-116"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of natural toxins","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
More than 350 PAs have been identified in over 6,000 plants in the Boraginaceae, Compositae, and Leguminosae families (Table 1). About half of the identified PAs are toxic and several have been shown to be carcinogenic in rodents. PA-containing plants have worldwide distribution, and they probably are the most common poisonous plants affecting livestock, wildlife, and humans. In many locations, PA-containing plants are introduced species that are considered invasive, noxious weeds. Both native and introduced PA-containing plants often infest open ranges and fields, replacing nutritious plants. Many are not palatable and livestock avoid eating them if other forages are available. However, as they invade fields or crops, plant parts or seeds can contaminate prepared feeds and grains which are then readily eaten by many animals. Human poisonings most often are a result of food contamination or when PA-containing plants areused for medicinal purposes. This is a review of current information on the diagnosis, pathogenesis, and molecular mechanisms of PA toxicity. Additional discussion includes current and future research objectives with an emphasis on the development of better diagnostics, pyrrole kinetics, and the effects of low dose PA exposure.