Cell cycle regulatory proteins in glomerular disease.

S J Shankland, M Al'Douahji
{"title":"Cell cycle regulatory proteins in glomerular disease.","authors":"S J Shankland,&nbsp;M Al'Douahji","doi":"10.1159/000020603","DOIUrl":null,"url":null,"abstract":"<p><p>The growth response of resident glomerular cells is determined by the underlying disease. Thus glomerular cells can proliferate, fail to proliferate, hypertrophy or apoptose. Cell growth is controlled by cell cycle regulatory proteins, and cell proliferation requires that cyclin-dependent kinases (CDK) be activated by partner cyclins. Inhibiting CDK2 reduces mesangial cell proliferation. Mesangial cell proliferation also requires that levels of specific cyclin kinase inhibitors (CKI) decrease. In contrast, the visceral glomerular epithelial cells' inability to proliferate may be due to increased levels of CKI. Moreover it is becoming increasingly clear that mesangial cell hypertrophy in diabetes requires increased CKI expression. Finally, apoptosis, which is often linked to proliferation, may also be due to the increased activity of CDK2. Thus, identifying specific cell cycle regulatory proteins following injury may provide future targets for therapy in glomerular disease.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000020603","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000020603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The growth response of resident glomerular cells is determined by the underlying disease. Thus glomerular cells can proliferate, fail to proliferate, hypertrophy or apoptose. Cell growth is controlled by cell cycle regulatory proteins, and cell proliferation requires that cyclin-dependent kinases (CDK) be activated by partner cyclins. Inhibiting CDK2 reduces mesangial cell proliferation. Mesangial cell proliferation also requires that levels of specific cyclin kinase inhibitors (CKI) decrease. In contrast, the visceral glomerular epithelial cells' inability to proliferate may be due to increased levels of CKI. Moreover it is becoming increasingly clear that mesangial cell hypertrophy in diabetes requires increased CKI expression. Finally, apoptosis, which is often linked to proliferation, may also be due to the increased activity of CDK2. Thus, identifying specific cell cycle regulatory proteins following injury may provide future targets for therapy in glomerular disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾小球疾病中的细胞周期调节蛋白。
常驻肾小球细胞的生长反应是由潜在疾病决定的。因此肾小球细胞可以增殖、不增殖、肥大或凋亡。细胞生长受细胞周期调节蛋白控制,细胞增殖需要周期蛋白依赖性激酶(CDK)被伴侣周期蛋白激活。抑制CDK2可减少系膜细胞增殖。系膜细胞增殖也需要特异性细胞周期蛋白激酶抑制剂(CKI)水平的降低。相反,内脏肾小球上皮细胞不能增殖可能是由于CKI水平升高。此外,越来越清楚的是,糖尿病的系膜细胞肥大需要CKI表达增加。最后,通常与增殖有关的细胞凋亡也可能是由于CDK2活性的增加。因此,鉴定损伤后特定的细胞周期调节蛋白可能为肾小球疾病的治疗提供未来的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unexpected renal actions of erythropoietin. Coagulation, fibrinolysis and angiogenesis: new insights from knockout mice. Role of the PDZ scaffolding protein in tubule cells in maintenance of polarised function. Myofibroblast differentiation: plasma membrane microdomains and cell phenotype. Regulation of inducible class II MHC, costimulatory molecules, and cytokine expression in TGF-beta1 knockout renal epithelial cells: effect of exogenous TGF-beta1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1