{"title":"Purification and characterization of an arylamine N-acetyltransferase in the nematode Enterobius vermicularis.","authors":"J G Chung","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>N-acetyltransferase (NAT) activities were determined by incubation of Enterobius vermicularis cytosols with 2-aminofluorene (2-AF) as the substrate followed by high pressure liquid chromatography assays. The NAT activity from E. vermicularis was found to be 0.41 +/- 0.08 nmol/min/mg protein for 2-AF. The apparent K(m) and Vmax values obtained were 0.81 +/- 0.11 mM and 2.25 +/- 0.22 nmol/min/mg protein respectively, for 2-AF. The optimal pH value for the enzyme activity was 7.5 for 2-AF. The optimal temperature for enzyme activity was 37 degrees C for the 2-AF substrate. The molecular weight of NAT from E. vermicularis was 44.9 kD. Among a series of divalent cations and salts, Zn2+, Ca2+, and Fe2+ were the most potent inhibitors. Of the protease inhibitors, only ethylenediaminetetraacetic acid significantly protected the NAT. Iodoacetate, in contrast to other agents, markedly inhibited NAT activity. This report is the first demonstration of acetyl coenzyme A-dependent arylamine NAT activity in E. vermicularis and extends the number of phyla in which this activity has been found.</p>","PeriodicalId":18494,"journal":{"name":"Microbios","volume":"98 389","pages":"15-25"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbios","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
N-acetyltransferase (NAT) activities were determined by incubation of Enterobius vermicularis cytosols with 2-aminofluorene (2-AF) as the substrate followed by high pressure liquid chromatography assays. The NAT activity from E. vermicularis was found to be 0.41 +/- 0.08 nmol/min/mg protein for 2-AF. The apparent K(m) and Vmax values obtained were 0.81 +/- 0.11 mM and 2.25 +/- 0.22 nmol/min/mg protein respectively, for 2-AF. The optimal pH value for the enzyme activity was 7.5 for 2-AF. The optimal temperature for enzyme activity was 37 degrees C for the 2-AF substrate. The molecular weight of NAT from E. vermicularis was 44.9 kD. Among a series of divalent cations and salts, Zn2+, Ca2+, and Fe2+ were the most potent inhibitors. Of the protease inhibitors, only ethylenediaminetetraacetic acid significantly protected the NAT. Iodoacetate, in contrast to other agents, markedly inhibited NAT activity. This report is the first demonstration of acetyl coenzyme A-dependent arylamine NAT activity in E. vermicularis and extends the number of phyla in which this activity has been found.