B J Zünkler, M Gräfe, B Henning, S Kühne, T Ott, E Fleck, A G Hildebrandt
{"title":"Effects of P2 purinoceptor agonists on membrane potential and intracellular Ca2+ of human cardiac endothelial cells.","authors":"B J Zünkler, M Gräfe, B Henning, S Kühne, T Ott, E Fleck, A G Hildebrandt","doi":"10.1111/j.1600-0773.1999.tb01056.x","DOIUrl":null,"url":null,"abstract":"<p><p>Vasoactive agonists like adenosine-5'-triphosphate (ATP) increase intracellular Ca2+ ([Ca2+]i) in vascular endothelial cells with an initial peak due to inositol 1,4,5-triphosphate-mediated Ca2+ release from intracellular stores followed by a sustained plateau that is dependent on the presence of extracellular Ca2+, thus leading to an increased synthesis and release of prostacyclin and nitric oxide. We studied the effects of nucleotides on membrane potential and [Ca2+]i in confluent human microvascular cardiac endothelial cells obtained from patients with dilated cardiomyopathy. The whole-cell configuration of the patch-clamp technique and a confocal laser scanning microscope employing fluo-3 as a Ca2+ indicator were used. Both uridine-5'-triphosphate (UTP) and 2-methylthioadenosine-5'-triphosphate (2MeSATP) induced depolarizations in human microvascular cardiac endothelial cells and increased [Ca2+]i with a rank order of potency 2MeSATP>ATP=UTP (EC50 values (in microM) were 0.084 2MeSATP, 0.67 ATP and 1.1 UTP). This suggests that both P2u and P2y purinoceptors are present on human microvascular cardiac endothelial cells. Maximal [Ca2+]i responses of confluent human microvascular cardiac endothelial cell monolayers to UTP were lower when compared to 2MeSATP. Nucleotide-induced increases in [Ca2+]i consisted of a transient peak, which was also observed in the absence of extracellular Ca2+, and a sustained [Ca2+]i plateau. This plateau, which was not observed in all monolayers studied, was not markedly influenced by increasing extracellular [K+]. Previous incubation with thapsigargin abolished ATP-induced increases of [Ca2+]i. It is concluded that human microvascular cardiac endothelial cells express both P2y and P2u purinoceptors. P2 purinoceptor agonists release Ca2+ from intracellular thapsigargin-sensitive stores and stimulate capacitative Ca2+ influx pathways. K+ efflux through Ca2+-dependent K+ (K(Ca)) channels does not play a major role in the regulation of nucleotide-induced Ca2+ influx in human microvascular cardiac endothelial cells, which might be related to an impaired function of the cells.</p>","PeriodicalId":19876,"journal":{"name":"Pharmacology & toxicology","volume":"85 1","pages":"7-15"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1600-0773.1999.tb01056.x","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology & toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1600-0773.1999.tb01056.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Vasoactive agonists like adenosine-5'-triphosphate (ATP) increase intracellular Ca2+ ([Ca2+]i) in vascular endothelial cells with an initial peak due to inositol 1,4,5-triphosphate-mediated Ca2+ release from intracellular stores followed by a sustained plateau that is dependent on the presence of extracellular Ca2+, thus leading to an increased synthesis and release of prostacyclin and nitric oxide. We studied the effects of nucleotides on membrane potential and [Ca2+]i in confluent human microvascular cardiac endothelial cells obtained from patients with dilated cardiomyopathy. The whole-cell configuration of the patch-clamp technique and a confocal laser scanning microscope employing fluo-3 as a Ca2+ indicator were used. Both uridine-5'-triphosphate (UTP) and 2-methylthioadenosine-5'-triphosphate (2MeSATP) induced depolarizations in human microvascular cardiac endothelial cells and increased [Ca2+]i with a rank order of potency 2MeSATP>ATP=UTP (EC50 values (in microM) were 0.084 2MeSATP, 0.67 ATP and 1.1 UTP). This suggests that both P2u and P2y purinoceptors are present on human microvascular cardiac endothelial cells. Maximal [Ca2+]i responses of confluent human microvascular cardiac endothelial cell monolayers to UTP were lower when compared to 2MeSATP. Nucleotide-induced increases in [Ca2+]i consisted of a transient peak, which was also observed in the absence of extracellular Ca2+, and a sustained [Ca2+]i plateau. This plateau, which was not observed in all monolayers studied, was not markedly influenced by increasing extracellular [K+]. Previous incubation with thapsigargin abolished ATP-induced increases of [Ca2+]i. It is concluded that human microvascular cardiac endothelial cells express both P2y and P2u purinoceptors. P2 purinoceptor agonists release Ca2+ from intracellular thapsigargin-sensitive stores and stimulate capacitative Ca2+ influx pathways. K+ efflux through Ca2+-dependent K+ (K(Ca)) channels does not play a major role in the regulation of nucleotide-induced Ca2+ influx in human microvascular cardiac endothelial cells, which might be related to an impaired function of the cells.