Water and electrolyte shifts with partial fluid replacement during exercise.

B Sanders, T D Noakes, S C Dennis
{"title":"Water and electrolyte shifts with partial fluid replacement during exercise.","authors":"B Sanders,&nbsp;T D Noakes,&nbsp;S C Dennis","doi":"10.1007/s004210050598","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we examined whether athletes, who typically replace only approximately 50% of their fluid losses during moderate-duration endurance exercise, should attempt to replace their Na+ losses to maintain extracellular fluid volume. Six male cyclists performed three 90-min rides at 65% of peak O2 uptake in a 32 degrees C environment and ingested either no fluid (NF), 1.21 of water (W), or saline (S) containing 100 mmol of NaCl x l(-1) to replace their electrolyte losses. Both W and S conditions decreased final heart rates by approximately 10 betas min(-1) (P<0.005) and reduced falls in plasma volume (PV) by approximately 4% (P<0.05). Maintenance of PV after 10 min in the W trial prevented further rises in plasma concentrations of Na+ [Na+], Cl- and protein but in the S and NF trials, plasma [Na+] continued to increase by approximately 4 mEq x l(-1). Differences in plasma [Na+] had little effect on the approximately 2.4 l fluid, approximately 120 mEq Na+ and approximately 50 mEq K+ losses in sweat and urine in the three trials. The main effects of W and S were on body fluid shifts. During the NF trial, PV and interstitial fluid (ISF) and intracellular fluid (ICF) volumes decreased by approximately 0.1, 1.2 and 1.0 l, respectively. In the W trial, the approximately 1.2 l fluid and approximately 120 mEq Na+ losses contracted the ISF volume, and in the S trial, ISF volume was maintained by the movement of water from the ICF. Since the W and S trials were equally effective in maintaining PV, Na+ ingestion may not be of much advantage to athletes who typically replace only approximately 50% of their fluid losses during competitive endurance exercise.</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050598","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

In this study, we examined whether athletes, who typically replace only approximately 50% of their fluid losses during moderate-duration endurance exercise, should attempt to replace their Na+ losses to maintain extracellular fluid volume. Six male cyclists performed three 90-min rides at 65% of peak O2 uptake in a 32 degrees C environment and ingested either no fluid (NF), 1.21 of water (W), or saline (S) containing 100 mmol of NaCl x l(-1) to replace their electrolyte losses. Both W and S conditions decreased final heart rates by approximately 10 betas min(-1) (P<0.005) and reduced falls in plasma volume (PV) by approximately 4% (P<0.05). Maintenance of PV after 10 min in the W trial prevented further rises in plasma concentrations of Na+ [Na+], Cl- and protein but in the S and NF trials, plasma [Na+] continued to increase by approximately 4 mEq x l(-1). Differences in plasma [Na+] had little effect on the approximately 2.4 l fluid, approximately 120 mEq Na+ and approximately 50 mEq K+ losses in sweat and urine in the three trials. The main effects of W and S were on body fluid shifts. During the NF trial, PV and interstitial fluid (ISF) and intracellular fluid (ICF) volumes decreased by approximately 0.1, 1.2 and 1.0 l, respectively. In the W trial, the approximately 1.2 l fluid and approximately 120 mEq Na+ losses contracted the ISF volume, and in the S trial, ISF volume was maintained by the movement of water from the ICF. Since the W and S trials were equally effective in maintaining PV, Na+ ingestion may not be of much advantage to athletes who typically replace only approximately 50% of their fluid losses during competitive endurance exercise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在运动过程中,水和电解质随着部分液体的补充而变化。
在这项研究中,我们研究了运动员在中等耐力运动中通常只补充大约50%的液体损失,是否应该尝试补充Na+损失以维持细胞外液容量。六名男性自行车手在32摄氏度的环境中,以65%的峰值氧气摄取量进行了三次90分钟的骑行,并摄入了不含液体(NF)、1.21水(W)或含有100 mmol NaCl x l(-1)的生理盐水(S)来补充电解质损失。W和S两种情况下,最终心率都降低了大约10 β min(-1)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees In vivo vibrational wave propagation in human tibiae at different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1