Serum hormone and myocellular protein recovery after intermittent runs at the velocity associated with VO(2max).

T Vuorimaa, T Vasankari, K Mattila, O Heinonen, K Häkkinen, H Rusko
{"title":"Serum hormone and myocellular protein recovery after intermittent runs at the velocity associated with VO(2max).","authors":"T Vuorimaa,&nbsp;T Vasankari,&nbsp;K Mattila,&nbsp;O Heinonen,&nbsp;K Häkkinen,&nbsp;H Rusko","doi":"10.1007/s004210050636","DOIUrl":null,"url":null,"abstract":"<p><p>The responses of serum myocellular proteins and hormones to exercise were studied in ten well-trained middle-distance runners [maximal oxygen consumption (VO(2max)) = 69.4 (5.1) ml x kg(-1) x min(-1)] during 3 recovery days and compared to various measures of physical performance. The purpose was to establish the duration of recovery from typical intermittent middle-distance running exercises. The subjects performed, in random, order two 28-min treadmill running exercises at a velocity associated with VO(2max): 14 bouts of 60-s runs with 60 s of rest between each run (IR(60)) and 7 bouts of 120-s runs with 120 s of rest between each run (IR(120)). Before the exercises (pre- exercise), 2 h after, and 1, 2 and 3 days after the exercises, the same series of measurements were performed, including those for serum levels of the myocellular proteins creatine kinase, myoglobin and carbonic anhydrase III (S-CK, S-Mb and S-CA III, respectively), serum hormones testosterone, Luteinizing hormone, follicle-stimulating hormone and cortisol (S-testosterone, S-LH, S-FSH and S-cortisol, respectively) and various performance parameters: maximal vertical jump height (CMJ) and stride length, heart rate and ratings of perceived exertion during an 8-min run at 15 km x h(-1) (SL(15 km x h(-1)), HR(15 km x h(-1)) and RPE(15 km x h(-1)), respectively). Two hours after the end of both exercise bouts the concentration of each measured serum protein had increased significantly (P < 0.001) compared to the pre-exercise level, but there were no changes in SL(15 km x h(-1)) or CMJ. During the recovery days only S-CK was significantly raised (P < 0.01), concomitant with a decrease in CMJ (P < 0.01) and an increase in RPE(15 km x h(-1)) (P < 0.01). Hormone levels remained unchanged compared to the pre-exercise levels during the recovery days and there were no significant differences between the two exercise bouts in any of the observed post-exercise day-to-day responses. With the exception of S-CK, after IR(120) the post-exercise responses returned to their pre-exercise levels within the 3 days of recovery. The present findings suggest that a single 28-min intermittent middle-distance running exercise does not induce changes in serum hormones of well-trained runners during recovery over 3 days, while changes in S-CK, CMJ and RPE(15 km x h(-1)) indicate that 2-3 days of light training may be needed before the recovery at muscle level is complete.</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050636","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The responses of serum myocellular proteins and hormones to exercise were studied in ten well-trained middle-distance runners [maximal oxygen consumption (VO(2max)) = 69.4 (5.1) ml x kg(-1) x min(-1)] during 3 recovery days and compared to various measures of physical performance. The purpose was to establish the duration of recovery from typical intermittent middle-distance running exercises. The subjects performed, in random, order two 28-min treadmill running exercises at a velocity associated with VO(2max): 14 bouts of 60-s runs with 60 s of rest between each run (IR(60)) and 7 bouts of 120-s runs with 120 s of rest between each run (IR(120)). Before the exercises (pre- exercise), 2 h after, and 1, 2 and 3 days after the exercises, the same series of measurements were performed, including those for serum levels of the myocellular proteins creatine kinase, myoglobin and carbonic anhydrase III (S-CK, S-Mb and S-CA III, respectively), serum hormones testosterone, Luteinizing hormone, follicle-stimulating hormone and cortisol (S-testosterone, S-LH, S-FSH and S-cortisol, respectively) and various performance parameters: maximal vertical jump height (CMJ) and stride length, heart rate and ratings of perceived exertion during an 8-min run at 15 km x h(-1) (SL(15 km x h(-1)), HR(15 km x h(-1)) and RPE(15 km x h(-1)), respectively). Two hours after the end of both exercise bouts the concentration of each measured serum protein had increased significantly (P < 0.001) compared to the pre-exercise level, but there were no changes in SL(15 km x h(-1)) or CMJ. During the recovery days only S-CK was significantly raised (P < 0.01), concomitant with a decrease in CMJ (P < 0.01) and an increase in RPE(15 km x h(-1)) (P < 0.01). Hormone levels remained unchanged compared to the pre-exercise levels during the recovery days and there were no significant differences between the two exercise bouts in any of the observed post-exercise day-to-day responses. With the exception of S-CK, after IR(120) the post-exercise responses returned to their pre-exercise levels within the 3 days of recovery. The present findings suggest that a single 28-min intermittent middle-distance running exercise does not induce changes in serum hormones of well-trained runners during recovery over 3 days, while changes in S-CK, CMJ and RPE(15 km x h(-1)) indicate that 2-3 days of light training may be needed before the recovery at muscle level is complete.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以与VO(2max)相关的速度间歇跑后血清激素和心肌细胞蛋白的恢复。
研究了10名训练有素的中长跑运动员[最大耗氧量(VO(2max)) = 69.4 (5.1) ml x kg(-1) x min(-1)]在3天的恢复期中血清心肌细胞蛋白和激素对运动的反应,并与各种身体表现指标进行了比较。目的是确定从典型的间歇中长跑运动中恢复的持续时间。受试者以与VO(2max)相关的速度随机进行两次28分钟的跑步机运动:14次60秒跑,每次跑之间休息60秒(IR(60))和7次120秒跑,每次跑之间休息120秒(IR(120))。在运动前(运动前)、运动后2小时、运动后1、2、3天,分别测定心肌细胞蛋白肌酸激酶、肌红蛋白和碳酸酐酶III(分别为S-CK、S-Mb和S-CA III)、血清激素睾酮、黄体生成素、促卵泡激素和皮质醇(分别为s -睾酮、S-LH、S-FSH和s -皮质醇)水平及各项运动参数。最大垂直跳跃高度(CMJ)和步幅长度、心率和在15公里×小时(-1)的8分钟跑步过程中感知运动的评级(分别为SL(15公里×小时(-1))、HR(15公里×小时(-1))和RPE(15公里×小时(-1)))。两组运动结束2小时后,与运动前水平相比,各血清蛋白浓度显著增加(P < 0.001),但SL(15 km × h(-1))和CMJ没有变化。恢复期间,只有S-CK显著升高(P < 0.01), CMJ显著降低(P < 0.01), RPE显著升高(P < 0.01)。在恢复期间,激素水平与运动前的水平相比没有变化,在观察到的运动后的日常反应中,两次运动之间没有显著差异。除S-CK外,IR(120)后,运动后反应在恢复后3天内恢复到运动前水平。目前的研究结果表明,单次28分钟间歇中长跑运动不会引起训练良好的跑步者在3天的恢复期间血清激素的变化,而S-CK、CMJ和RPE(15公里×小时(-1))的变化表明,在肌肉水平的恢复完成之前,可能需要2-3天的轻训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees Acknowledgement to referees In vivo vibrational wave propagation in human tibiae at different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1