J Liu, C Li, T E Ahlborn, M J Spence, L Meng, L M Boxer
{"title":"The expression of p53 tumor suppressor gene in breast cancer cells is down-regulated by cytokine oncostatin M.","authors":"J Liu, C Li, T E Ahlborn, M J Spence, L Meng, L M Boxer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Previously (J. Liu, et al., Cell Growth Differ., 8: 667-676, 1997), we showed that oncostatin M (OM), a cytokine produced by activated T cells and macrophages, inhibited the proliferation of breast cancer cells derived from solid tumors and malignant effusions. OM-treated cells showed reduced growth rates and differentiated phenotypes. Because the p53 tumor suppressor protein plays an important role in cellular proliferation, we examined p53 protein expression in three OM-responsive breast cancer cell lines, MCF-7, MDA-MB231, and H3922. Western blot analysis showed that p53 protein levels in all three of the cell lines were decreased by OM treatment. Reduction of p53 protein was detected after 1 day of OM treatment and reached maximal suppression of 10-20% of control after 3 days in H3922 and 40% of control after 4 days in MCF-7 cells. A comparison of p53 mRNA in OM-treated cells versus untreated control cells showed that exposure to OM reduced the steady-state levels of p53 mRNA transcripts to an extent similar to that of the p53 protein levels. This observation suggests that the effect of OM on p53 protein expression does not occur at the posttranslational level. Nuclear run-on assays verified that OM decreased the number of actively transcribed p53 mRNAs, which suggests a transcriptional regulatory mechanism. The effect of OM on p53 expression seems to be mediated through the extracellular signal-regulated kinase (ERK) pathway, inasmuch as the inhibition of ERK activation with a specific inhibitor (PD98059) to the ERK upstream kinase mitogen/extracellular-regulated protein kinase kinase abrogated the OM inhibitory activity on p53 expression in a dose-dependent manner. In addition to OM, we showed that the p53 protein expression in MCF-7 cells was also decreased by phorbol 12-myristate 13-acetate treatment (PMA). Because both OM and PMA induce MCF-7 cells to differentiate, our data suggest that p53 expression in breast cancer cells is down-regulated during the differentiation process.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"10 10","pages":"677-83"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Previously (J. Liu, et al., Cell Growth Differ., 8: 667-676, 1997), we showed that oncostatin M (OM), a cytokine produced by activated T cells and macrophages, inhibited the proliferation of breast cancer cells derived from solid tumors and malignant effusions. OM-treated cells showed reduced growth rates and differentiated phenotypes. Because the p53 tumor suppressor protein plays an important role in cellular proliferation, we examined p53 protein expression in three OM-responsive breast cancer cell lines, MCF-7, MDA-MB231, and H3922. Western blot analysis showed that p53 protein levels in all three of the cell lines were decreased by OM treatment. Reduction of p53 protein was detected after 1 day of OM treatment and reached maximal suppression of 10-20% of control after 3 days in H3922 and 40% of control after 4 days in MCF-7 cells. A comparison of p53 mRNA in OM-treated cells versus untreated control cells showed that exposure to OM reduced the steady-state levels of p53 mRNA transcripts to an extent similar to that of the p53 protein levels. This observation suggests that the effect of OM on p53 protein expression does not occur at the posttranslational level. Nuclear run-on assays verified that OM decreased the number of actively transcribed p53 mRNAs, which suggests a transcriptional regulatory mechanism. The effect of OM on p53 expression seems to be mediated through the extracellular signal-regulated kinase (ERK) pathway, inasmuch as the inhibition of ERK activation with a specific inhibitor (PD98059) to the ERK upstream kinase mitogen/extracellular-regulated protein kinase kinase abrogated the OM inhibitory activity on p53 expression in a dose-dependent manner. In addition to OM, we showed that the p53 protein expression in MCF-7 cells was also decreased by phorbol 12-myristate 13-acetate treatment (PMA). Because both OM and PMA induce MCF-7 cells to differentiate, our data suggest that p53 expression in breast cancer cells is down-regulated during the differentiation process.