Antisense and kidney cell research.

M B Ganz
{"title":"Antisense and kidney cell research.","authors":"M B Ganz","doi":"10.1159/000020639","DOIUrl":null,"url":null,"abstract":"<p><p>Antisense oligodeoxynucleotides offer the potential to block the expression of specific genes with the goal of altering the phenotypic behavior of the cell. Antisense technology has attracted special interest as potential therapeutic agents for the treatment of genetic disorders, viral infections, and most recently proliferative diseases such as glomerular kidney disease. This technique has recently been used for in vitro and in vivo studies in renal cells. The use of antisense technology has been applied in vitro to help define both the normal mechanisms of specific ion transport and function and the pathobiological processes leading to glomerular proliferation and matrix formation. Most promising are the recent uses of antisense technology in vivo that have been used to treat the damaged peritoneum and alter glomerular remodeling in experimental animal models. It is hoped that widespread use of antisense will not only provide new insight into the normal regulatory behavior of the kidney cells but also allow one to develop therapeutic strategies to treat kidney disease.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000020639","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000020639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antisense oligodeoxynucleotides offer the potential to block the expression of specific genes with the goal of altering the phenotypic behavior of the cell. Antisense technology has attracted special interest as potential therapeutic agents for the treatment of genetic disorders, viral infections, and most recently proliferative diseases such as glomerular kidney disease. This technique has recently been used for in vitro and in vivo studies in renal cells. The use of antisense technology has been applied in vitro to help define both the normal mechanisms of specific ion transport and function and the pathobiological processes leading to glomerular proliferation and matrix formation. Most promising are the recent uses of antisense technology in vivo that have been used to treat the damaged peritoneum and alter glomerular remodeling in experimental animal models. It is hoped that widespread use of antisense will not only provide new insight into the normal regulatory behavior of the kidney cells but also allow one to develop therapeutic strategies to treat kidney disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反义和肾细胞研究。
反义寡脱氧核苷酸具有阻断特定基因表达的潜力,目的是改变细胞的表型行为。反义技术作为治疗遗传性疾病、病毒感染和最近的增殖性疾病(如肾小球肾病)的潜在治疗药物引起了人们的特别兴趣。这项技术最近被用于体外和体内肾细胞的研究。反义技术已在体外应用,以帮助确定特定离子运输和功能的正常机制以及导致肾小球增殖和基质形成的病理生物学过程。最有希望的是最近在体内使用反义技术,在实验动物模型中用于治疗受损的腹膜和改变肾小球重塑。希望反义蛋白的广泛应用不仅能对肾脏细胞的正常调控行为提供新的认识,而且能帮助人们制定治疗肾脏疾病的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unexpected renal actions of erythropoietin. Coagulation, fibrinolysis and angiogenesis: new insights from knockout mice. Role of the PDZ scaffolding protein in tubule cells in maintenance of polarised function. Myofibroblast differentiation: plasma membrane microdomains and cell phenotype. Regulation of inducible class II MHC, costimulatory molecules, and cytokine expression in TGF-beta1 knockout renal epithelial cells: effect of exogenous TGF-beta1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1