D W Johnson, H J Saunders, F J Johnson, S O Huq, M J Field, C A Pollock
{"title":"Fibrogenic effects of cyclosporin A on the tubulointerstitium: role of cytokines and growth factors.","authors":"D W Johnson, H J Saunders, F J Johnson, S O Huq, M J Field, C A Pollock","doi":"10.1159/000020626","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical utility of cyclosporin A (CyA) as an immunosuppressive agent has been significantly limited by the frequent occurrence of chronic nephrotoxicity, characterised by tubular atrophy, interstitial fibrosis and progressive renal impairment. The pathogenesis of this condition remains poorly understood, but has been postulated to be due to either direct cytotoxicity or indirect injury secondary to chronic renal vasoconstriction. Using primary cultures of human proximal tubule cells (PTCs) and renal cortical fibroblasts (CFs) as an in vitro model of the tubulointerstitium, we have been able to demonstrate that clinically relevant concentrations of CyA are directly toxic to these cells and promote fibrogenesis by a combination of suppressed matrix metalloproteinase activity and augmented fibroblast collagen synthesis. The latter effect occurs secondary to the ability of CyA to stimulate autocrine secretion of insulin-like growth factor-I by CFs and paracrine secretion of transforming growth factor-beta(1) by PTCs. Many of these pro-fibrotic mechanisms are completely reversed by concurrent administration of the angiotensin-converting enzyme inhibitor, enalaprilat, which has proven efficacy in preventing chronic CyA nephropathy in vivo. These studies highlight the unique potential that human renal cell cultures offer for studying the role of local cytokine networks in tubulointerstitial disease and for developing more effective treatment strategies which specifically target fibrogenic growth factor activity following nephrotoxic injuries.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000020626","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000020626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
The clinical utility of cyclosporin A (CyA) as an immunosuppressive agent has been significantly limited by the frequent occurrence of chronic nephrotoxicity, characterised by tubular atrophy, interstitial fibrosis and progressive renal impairment. The pathogenesis of this condition remains poorly understood, but has been postulated to be due to either direct cytotoxicity or indirect injury secondary to chronic renal vasoconstriction. Using primary cultures of human proximal tubule cells (PTCs) and renal cortical fibroblasts (CFs) as an in vitro model of the tubulointerstitium, we have been able to demonstrate that clinically relevant concentrations of CyA are directly toxic to these cells and promote fibrogenesis by a combination of suppressed matrix metalloproteinase activity and augmented fibroblast collagen synthesis. The latter effect occurs secondary to the ability of CyA to stimulate autocrine secretion of insulin-like growth factor-I by CFs and paracrine secretion of transforming growth factor-beta(1) by PTCs. Many of these pro-fibrotic mechanisms are completely reversed by concurrent administration of the angiotensin-converting enzyme inhibitor, enalaprilat, which has proven efficacy in preventing chronic CyA nephropathy in vivo. These studies highlight the unique potential that human renal cell cultures offer for studying the role of local cytokine networks in tubulointerstitial disease and for developing more effective treatment strategies which specifically target fibrogenic growth factor activity following nephrotoxic injuries.