Understanding Rasch measurement: estimation methods for Rasch measures.

Journal of outcome measurement Pub Date : 1999-01-01
J M Linacre
{"title":"Understanding Rasch measurement: estimation methods for Rasch measures.","authors":"J M Linacre","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Rasch parameter estimation methods can be classified as non-interative and iterative. Non-iterative methods include the normal approximation algorithm (PROX) for complete dichotomous data. Iterative methods fall into 3 types. Datum-by-datum methods include Gaussian least-squares, minimum chi-square, and the pairwise (PAIR) method. Marginal methods without distributional assumptions include conditional maximum-likelihood estimation (CMLE), joint maximum-likelihood estimation (JMLE) and log-linear approaches. Marginal methods with distributional assumptions include marginal maximum-likelihood estimation (MMLE) and the normal approximation algorithm (PROX) for missing data. Estimates from all methods are characterized by standard errors and quality-control fit statistics. Standard errors can be local (defined relative to the measure of a particular item) or general (defined relative to the abstract origin of the scale). They can also be ideal (as though the data fit the model) or inflated by the misfit to the model present in the data. Five computer programs, implementing different estimation methods, produce statistically equivalent estimates. Nevertheless, comparing estimates from different programs requires care.</p>","PeriodicalId":79673,"journal":{"name":"Journal of outcome measurement","volume":"3 4","pages":"382-405"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of outcome measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rasch parameter estimation methods can be classified as non-interative and iterative. Non-iterative methods include the normal approximation algorithm (PROX) for complete dichotomous data. Iterative methods fall into 3 types. Datum-by-datum methods include Gaussian least-squares, minimum chi-square, and the pairwise (PAIR) method. Marginal methods without distributional assumptions include conditional maximum-likelihood estimation (CMLE), joint maximum-likelihood estimation (JMLE) and log-linear approaches. Marginal methods with distributional assumptions include marginal maximum-likelihood estimation (MMLE) and the normal approximation algorithm (PROX) for missing data. Estimates from all methods are characterized by standard errors and quality-control fit statistics. Standard errors can be local (defined relative to the measure of a particular item) or general (defined relative to the abstract origin of the scale). They can also be ideal (as though the data fit the model) or inflated by the misfit to the model present in the data. Five computer programs, implementing different estimation methods, produce statistically equivalent estimates. Nevertheless, comparing estimates from different programs requires care.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理解拉希测量:拉希测量的估计方法。
拉希参数估计方法可分为非迭代法和迭代法。非迭代方法包括完全二分类数据的正态逼近算法(PROX)。迭代方法分为三种类型。逐基准方法包括高斯最小二乘、最小卡方和成对(PAIR)方法。无分布假设的边际方法包括条件最大似然估计(CMLE)、联合最大似然估计(JMLE)和对数线性方法。具有分布假设的边际方法包括边际最大似然估计(MMLE)和缺失数据的正态逼近(PROX)。所有方法的估计都以标准误差和质量控制拟合统计为特征。标准误差可以是局部的(相对于特定项目的测量定义)或普遍的(相对于尺度的抽象起源定义)。它们也可以是理想的(就好像数据符合模型一样),也可以由于与数据中存在的模型不符合而被夸大。五个计算机程序,实现不同的估计方法,产生统计上等效的估计。然而,比较不同项目的估算值需要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of seven different scales used to quantify severity of cervical spondylotic myelopathy and post-operative improvement. The impact of rater effects on weighted composite scores under nested and spiraled scoring designs, using the multifaceted Rasch model. Measuring disability: application of the Rasch model to activities of daily living (ADL/IADL). Competency gradient for child-parent centers. Alternate forms reliability of the assessment of motor and process skills.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1