Gilbert R Hillman , Chih-Wei Chang , HaoYing Ying , John Yen , Leena Ketonen , Thomas A Kent
{"title":"A Fuzzy Logic Approach to Identifying Brain Structures in MRI Using Expert Anatomic Knowledge","authors":"Gilbert R Hillman , Chih-Wei Chang , HaoYing Ying , John Yen , Leena Ketonen , Thomas A Kent","doi":"10.1006/cbmr.1999.1516","DOIUrl":null,"url":null,"abstract":"<div><p>We report a novel computer method for automatic labeling of structures in 3D MRI data sets using expert anatomical knowledge that is coded in fuzzy sets and fuzzy rules. The method first identifies major structures and then uses spatial relationships to these landmarks to recognize other structures. This labeling process simulates the iterative process that we ourselves use to locate structures in images. We demonstrate its application in three data sets, labeling brain MRI by locating the longitudinal and lateral fissures and the central sulci and then determining boundaries for the frontal lobes. Our method is adaptable to the identification of other anatomical structures.</p></div>","PeriodicalId":75733,"journal":{"name":"Computers and biomedical research, an international journal","volume":"32 6","pages":"Pages 503-516"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cbmr.1999.1516","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and biomedical research, an international journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010480999915161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We report a novel computer method for automatic labeling of structures in 3D MRI data sets using expert anatomical knowledge that is coded in fuzzy sets and fuzzy rules. The method first identifies major structures and then uses spatial relationships to these landmarks to recognize other structures. This labeling process simulates the iterative process that we ourselves use to locate structures in images. We demonstrate its application in three data sets, labeling brain MRI by locating the longitudinal and lateral fissures and the central sulci and then determining boundaries for the frontal lobes. Our method is adaptable to the identification of other anatomical structures.