{"title":"Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly.","authors":"S A Garland, K Hoff, L E Vickery, V C Culotta","doi":"10.1006/jmbi.1999.3294","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies in bacteria and eukaryotes have led to the identification of several new genes implicated in the biogenesis of iron-sulfur (Fe/S) cluster-containing proteins. This report focuses on two genes of bakers yeast Saccharomyces cerevisiae, ISU1 and ISU2, which encode homologues to bacterial IscU and NifU, potential iron-binding or cluster-assembly proteins. As with other yeast genes implicated in Fe/S protein assembly, deletion of either ISU1 or ISU2 results in increased accumulation of iron within the mitochondria, loss of activity of the [4Fe-4S] aconitase enzyme, and suppression of oxidative damage in cells lacking cytosolic copper/zinc superoxide dismutase. Both genes are induced in strains expressing an activated allele of Aft1p, the iron-sensing transcription factor, suggesting that they are regulated by the iron status of the cell. Immunoblotting studies using an antibody directed against Escherichia coli IscU reveal that both Isu1p and Isu2p are localized primarily in the mitochondria and that Isu1p is the predominant form expressed under all growth conditions tested. The possible role of the Isu proteins in the assembly and/or repair of Fe/S clusters is discussed.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"1999-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/jmbi.1999.3294","citationCount":"191","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1006/jmbi.1999.3294","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 191
Abstract
Recent studies in bacteria and eukaryotes have led to the identification of several new genes implicated in the biogenesis of iron-sulfur (Fe/S) cluster-containing proteins. This report focuses on two genes of bakers yeast Saccharomyces cerevisiae, ISU1 and ISU2, which encode homologues to bacterial IscU and NifU, potential iron-binding or cluster-assembly proteins. As with other yeast genes implicated in Fe/S protein assembly, deletion of either ISU1 or ISU2 results in increased accumulation of iron within the mitochondria, loss of activity of the [4Fe-4S] aconitase enzyme, and suppression of oxidative damage in cells lacking cytosolic copper/zinc superoxide dismutase. Both genes are induced in strains expressing an activated allele of Aft1p, the iron-sensing transcription factor, suggesting that they are regulated by the iron status of the cell. Immunoblotting studies using an antibody directed against Escherichia coli IscU reveal that both Isu1p and Isu2p are localized primarily in the mitochondria and that Isu1p is the predominant form expressed under all growth conditions tested. The possible role of the Isu proteins in the assembly and/or repair of Fe/S clusters is discussed.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.