Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney.

L Tang, M Parker, Q Fei, R Loutzenhiser
{"title":"Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney.","authors":"L Tang,&nbsp;M Parker,&nbsp;Q Fei,&nbsp;R Loutzenhiser","doi":"10.1152/ajprenal.1999.277.6.F926","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine is known to exert dual actions on the afferent arteriole, eliciting vasoconstriction, by activating A1 receptors, and vasodilation at higher concentrations, by activating lower-affinity A2 receptors. We could demonstrate both of these known adenosine responses in the in vitro perfused hydronephrotic rat kidney. Thus, 1.0 microM adenosine elicited a transient vasoconstriction blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), and 10-30 microM adenosine reversed KCl-induced vasoconstriction. However, when we examined the effects of adenosine on pressure-induced afferent arteriolar vasoconstriction, we observed a third action. In this setting, a high-affinity adenosine vasodilatory response was observed at concentrations of 10-300 nM. This response was blocked by both 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3, 5]triazin-5-yl-amino]ethyl)phenol (ZM-241385) and glibenclamide and was mimicked by 2-phenylaminoadenosine (CV-1808) (IC50 of 100 nM), implicating adenosine A2a receptors coupled to ATP-sensitive K channels (KATP). Like adenosine, 5'-N-ethylcarboxamidoadenosine (NECA) elicited both glibenclamide-sensitive and glibenclamide-insensitive vasodilatory responses. The order of potency for the glibenclamide-sensitive component was NECA > adenosine = CV-1808. Our findings suggest that, in addition to the previously described adenosine A1 and low-affinity A2b receptors, the renal microvasculature is also capable of expressing high-affinity adenosine A2a receptors. This renal adenosine receptor elicits afferent arteriolar vasodilation at submicromolar adenosine levels by activating KATP.</p>","PeriodicalId":7590,"journal":{"name":"American Journal of Physiology","volume":"277 6","pages":"F926-33"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/ajprenal.1999.277.6.F926","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.1999.277.6.F926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Adenosine is known to exert dual actions on the afferent arteriole, eliciting vasoconstriction, by activating A1 receptors, and vasodilation at higher concentrations, by activating lower-affinity A2 receptors. We could demonstrate both of these known adenosine responses in the in vitro perfused hydronephrotic rat kidney. Thus, 1.0 microM adenosine elicited a transient vasoconstriction blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), and 10-30 microM adenosine reversed KCl-induced vasoconstriction. However, when we examined the effects of adenosine on pressure-induced afferent arteriolar vasoconstriction, we observed a third action. In this setting, a high-affinity adenosine vasodilatory response was observed at concentrations of 10-300 nM. This response was blocked by both 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3, 5]triazin-5-yl-amino]ethyl)phenol (ZM-241385) and glibenclamide and was mimicked by 2-phenylaminoadenosine (CV-1808) (IC50 of 100 nM), implicating adenosine A2a receptors coupled to ATP-sensitive K channels (KATP). Like adenosine, 5'-N-ethylcarboxamidoadenosine (NECA) elicited both glibenclamide-sensitive and glibenclamide-insensitive vasodilatory responses. The order of potency for the glibenclamide-sensitive component was NECA > adenosine = CV-1808. Our findings suggest that, in addition to the previously described adenosine A1 and low-affinity A2b receptors, the renal microvasculature is also capable of expressing high-affinity adenosine A2a receptors. This renal adenosine receptor elicits afferent arteriolar vasodilation at submicromolar adenosine levels by activating KATP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体外灌注肾积水大鼠肾传入小动脉腺苷A2a受体与KATP偶联。
众所周知,腺苷对传入小动脉有双重作用,通过激活A1受体引起血管收缩,在较高浓度下通过激活低亲和力A2受体引起血管舒张。我们可以在体外灌注的肾积水大鼠肾脏中证明这两种已知的腺苷反应。因此,1.0 μ m腺苷引起了8-环戊基-1,3-二丙基黄嘌呤(DPCPX)阻断的短暂血管收缩,10-30 μ m腺苷逆转了kcl诱导的血管收缩。然而,当我们检查腺苷对压力诱导的传入小动脉血管收缩的影响时,我们观察到第三种作用。在这种情况下,在10-300 nM浓度下观察到高亲和力腺苷血管扩张反应。该反应被4-(2-[7-氨基-2-(2-呋喃基)[1,2,4]三唑[2,3-a][1,3,5]三嗪-5-氨基]乙基)苯酚(ZM-241385)和格列本脲阻断,并被2-苯基氨基腺苷(CV-1808) (IC50为100 nM)模拟,暗示腺苷A2a受体偶联到atp敏感的K通道(KATP)。与腺苷一样,5'- n -乙基羧胺腺苷(NECA)可引起格列本脲敏感和格列本脲不敏感的血管舒张反应。格列本脲敏感组分效价顺序为NECA >腺苷= CV-1808。我们的研究结果表明,除了先前描述的腺苷A1和低亲和力的A2b受体外,肾脏微血管也能够表达高亲和力的腺苷A2a受体。这种肾腺苷受体通过激活KATP以亚微摩尔腺苷水平诱导传入小动脉血管舒张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1
期刊最新文献
Case Report: Intraoperative Fascial Traction in Robotic Abdominal Wall Surgery; An Early Experience. Microvessel occlusions alter amyloid-beta plaque morphology in a mouse model of Alzheimer's disease. De virtuele diabeteskliniek in een stroomversnelling? An interventional image-guided microdevice implantation and retrieval method for in-vivo drug response assessment. Methods for Congenital Thumb Hypoplasia Reconstruction. A Review of the Outcomes for Ten Years of Surgical Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1