D A Jones, P Brading, M Dixon, K Hammond-Kosack, K Harrison, K Hatzixanthis, M Parniske, P Piedras, M Torres, S Tang, C Thomas, J D Jones
{"title":"Molecular, genetic and physiological analysis of Cladosporium resistance gene function in tomato.","authors":"D A Jones, P Brading, M Dixon, K Hammond-Kosack, K Harrison, K Hatzixanthis, M Parniske, P Piedras, M Torres, S Tang, C Thomas, J D Jones","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Characterization of the DNA sequence of 4 tomato leaf mould disease resistance genes (Cf-2, Cf-4, Cf-5 and Cf-9) leads to the prediction that they encode C-terminally membrane anchored glycopeptides with many extracytoplasmic leucine rich repeats (LRRs). The N terminal LRRs are variable between the Cf-genes, suggesting a role in specificity, and the C terminal LRRs are more conserved, suggesting a role in signal transduction. Genetic analysis has revealed several Rcr genes that are required for Cf-gene function; their isolation will help us understand how Cf-genes work. Cf-9 confers responsiveness to pathogen-encoded Avr9 peptide on introduction to tobacco. Tobacco suspension cultures carrying the Cf-9 gene produce reactive oxygen species in response to Avr9 peptide, whereas untransformed cultures do not. The significance of these observations is discussed.</p>","PeriodicalId":22134,"journal":{"name":"Symposia of the Society for Experimental Biology","volume":"51 ","pages":"111-3"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposia of the Society for Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Characterization of the DNA sequence of 4 tomato leaf mould disease resistance genes (Cf-2, Cf-4, Cf-5 and Cf-9) leads to the prediction that they encode C-terminally membrane anchored glycopeptides with many extracytoplasmic leucine rich repeats (LRRs). The N terminal LRRs are variable between the Cf-genes, suggesting a role in specificity, and the C terminal LRRs are more conserved, suggesting a role in signal transduction. Genetic analysis has revealed several Rcr genes that are required for Cf-gene function; their isolation will help us understand how Cf-genes work. Cf-9 confers responsiveness to pathogen-encoded Avr9 peptide on introduction to tobacco. Tobacco suspension cultures carrying the Cf-9 gene produce reactive oxygen species in response to Avr9 peptide, whereas untransformed cultures do not. The significance of these observations is discussed.