M A Iannone, J D Taylor, J Chen, M S Li, P Rivers, K A Slentz-Kesler, M P Weiner
{"title":"Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry.","authors":"M A Iannone, J D Taylor, J Chen, M S Li, P Rivers, K A Slentz-Kesler, M P Weiner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We have developed a rapid, high throughput method for single nucleotide polymorphism (SNP) genotyping that employs an oligonucleotide ligation assay (OLA) and flow cytometric analysis of fluorescent microspheres.</p><p><strong>Methods: </strong>A fluoresceinated oligonucleotide reporter sequence is added to a \"capture\" probe by OLA. Capture probes are designed to hybridize both to genomic \"targets\" amplified by polymerase chain reaction and to a separate complementary DNA sequence that has been coupled to a microsphere. These sequences on the capture probes are called \"ZipCodes\". The OLA-modified capture probes are hybridized to ZipCode complement-coupled microspheres. The use of microspheres with different ratios of red and orange fluorescence makes a multiplexed format possible where many SNPs may be analyzed in a single tube. Flow cytometric analysis of the microspheres simultaneously identifies both the microsphere type and the fluorescent green signal associated with the SNP genotype.</p><p><strong>Results: </strong>Application of this methodology is demonstrated by the multiplexed genotyping of seven CEPH DNA samples for nine SNP markers located near the ApoE locus on chromosome 19. The microsphere-based SNP analysis agreed with genotyping by sequencing in all cases.</p><p><strong>Conclusions: </strong>Multiplexed SNP genotyping by OLA with flow cytometric analysis of fluorescent microspheres is an accurate and rapid method for the analysis of SNPs.</p>","PeriodicalId":10947,"journal":{"name":"Cytometry","volume":"39 2","pages":"131-40"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: We have developed a rapid, high throughput method for single nucleotide polymorphism (SNP) genotyping that employs an oligonucleotide ligation assay (OLA) and flow cytometric analysis of fluorescent microspheres.
Methods: A fluoresceinated oligonucleotide reporter sequence is added to a "capture" probe by OLA. Capture probes are designed to hybridize both to genomic "targets" amplified by polymerase chain reaction and to a separate complementary DNA sequence that has been coupled to a microsphere. These sequences on the capture probes are called "ZipCodes". The OLA-modified capture probes are hybridized to ZipCode complement-coupled microspheres. The use of microspheres with different ratios of red and orange fluorescence makes a multiplexed format possible where many SNPs may be analyzed in a single tube. Flow cytometric analysis of the microspheres simultaneously identifies both the microsphere type and the fluorescent green signal associated with the SNP genotype.
Results: Application of this methodology is demonstrated by the multiplexed genotyping of seven CEPH DNA samples for nine SNP markers located near the ApoE locus on chromosome 19. The microsphere-based SNP analysis agreed with genotyping by sequencing in all cases.
Conclusions: Multiplexed SNP genotyping by OLA with flow cytometric analysis of fluorescent microspheres is an accurate and rapid method for the analysis of SNPs.